
1

Undecidability

Everything is an Integer

Countable and Uncountable Sets

Turing Machines

Recursive and Recursively
Enumerable Languages

2

Integers, Strings, and Other Things

Data types have become very important
as a programming tool.

But at another level, there is only one
type, which you may think of as
integers or strings.

Key point: Strings that are programs are
just another way to think about the
same one data type.

3

Example: Text

Strings of ASCII or Unicode characters
can be thought of as binary strings,
with 8 or 16 bits/character.

Binary strings can be thought of as
integers.

It makes sense to talk about “the i-th
string.”

4

Binary Strings to Integers

There’s a small glitch:

If you think simply of binary integers, then
strings like 101, 0101, 00101,… all appear
to be “the fifth string.”

Fix by prepending a “1” to the string
before converting to an integer.

Thus, 101, 0101, and 00101 are the 13th,
21st, and 37th strings, respectively.

5

Example: Images

Represent an image in (say) GIF.

The GIF file is an ASCII string.

Convert string to binary.

Convert binary string to integer.

Now we have a notion of “the i-th
image.”

6

Example: Proofs

A formal proof is a sequence of logical
expressions, each of which follows from
the ones before it.

Encode mathematical expressions of
any kind in Unicode.

Convert expression to a binary string
and then an integer.

7

Proofs – (2)

But a proof is a sequence of
expressions, so we need a way to
separate them.

Also, we need to indicate which
expressions are given and which follow
from previous expressions.

8

Proofs – (3)

Quick-and-dirty way to introduce new
symbols into binary strings:

1. Given a binary string, precede each bit by 0.

Example: 101 becomes 010001.

2. Use strings of two or more 1’s as the special
symbols.

Example: 111 = “the following expression is
given”; 11 = “end of expression.”

9

Example: Encoding Proofs

1110100011111100000101110101…

A given
expression
follows

An ex-
pression

End of
expression

Notice this
1 could not
be part of
the “end”

A given
expression
follows

Expression

End

10

Example: Programs

Programs are just another kind of data.

Represent a program in ASCII.

Convert to a binary string, then to an
integer.

Thus, it makes sense to talk about “the
i-th program.”

Hmm…There aren’t all that many
programs.

11

Finite Sets

A finite set has a particular integer that
is the count of the number of members.

Example: {a, b, c} is a finite set; its
cardinality is 3.

It is impossible to find a 1-1 mapping
between a finite set and a proper
subset of itself.

12

Infinite Sets

Formally, an infinite set is a set for which
there is a 1-1 correspondence between
itself and a proper subset of itself.

Example: the positive integers {1, 2, 3,…}
is an infinite set.

There is a 1-1 correspondence 1<->2, 2<->4,
3<->6,… between this set and a proper
subset (the set of even integers).

13

Countable Sets

A countable set is a set with a 1-1
correspondence with the positive integers.

Hence, all countable sets are infinite.

Example: All integers.

0<->1; -i <-> 2i; +i <-> 2i+1.

Thus, order is 0, -1, 1, -2, 2, -3, 3,…

Examples: set of binary strings, set of Java
programs.

14

Example: Pairs of Integers

Order the pairs of positive integers first
by sum, then by first component:

[1,1], [2,1], [1,2], [3,1], [2,2], [1,3],
[4,1], [3,2],…, [1,4], [5,1],…

Interesting exercise: figure out the
function f(i,j) such that the pair [i,j]
corresponds to the integer f(i,j) in this
order.

15

Enumerations

An enumeration of a set is a 1-1
correspondence between the set and
the positive integers.

Thus, we have seen enumerations for
strings, programs, proofs, and pairs of
integers.

16

How Many Languages?

Are the languages over {0,1} countable?

No; here’s a proof.

Suppose we could enumerate all
languages over {0,1} and talk about “the
i-th language.”

Consider the language L = { w | w is the
i-th binary string and w is not in the i-th
language}.

17

Proof – Continued

Clearly, L is a language over {0,1}.

Thus, it is the j-th language for some
particular j.

Let x be the j-th string.

Is x in L?

If so, x is not in L by definition of L.

If not, then x is in L by definition of L.

Recall: L = { w | w is the
i-th binary string and w is
not in the i-th language}.

x

j-th

Lj

18

Proof – Concluded

We have a contradiction: x is neither in
L nor not in L, so our sole assumption
(that there was an enumeration of the
languages) is wrong.

Comment: This is really bad; there are
more languages than programs.

E.g., there are languages with no
membership algorithm.

19

Diagonalization Picture

Strings

1 2 3 4 5 …

1

12

3

4

5

…

Languages

0

111

1

0

00 …

…

20

Diagonalization Picture

Strings

1 2 3 4 5 …

1

02

3

4

5

…

Languages

1

110

0

1

00 …

…

Flip each
diagonal
entry

Can’t be
a row –
it disagrees
in an entry
of each row.

21

Turing-Machine Theory

The purpose of the theory of Turing
machines is to prove that certain
specific languages have no algorithm.

Start with a language about Turing
machines themselves.

Reductions are used to prove more
common questions undecidable.

22

Picture of a Turing Machine

State

.A B C A D

Infinite tape with
squares containing
tape symbols chosen
from a finite alphabet

Action: based on
the state and the
tape symbol under
the head: change
state, rewrite the
symbol and move the
head one square.

23

Why Turing Machines?

Why not deal with C programs or
something like that?

Answer: You can, but it is easier to prove
things about TM’s, because they are so
simple.

And yet they are as powerful as any
computer.

• More so, in fact, since they have infinite memory.

24

Turing-Machine Formalism

A TM is described by:

1. A finite set of states (Q, typically).

2. An input alphabet (Σ, typically).

3. A tape alphabet (Γ, typically; contains Σ).

4. A transition function (δ, typically).

5. A start state (q0, in Q, typically).

6. A blank symbol (B, in Γ- Σ, typically).

All tape except for the input is blank initially.

7. A set of final states (F ⊆ Q, typically).

25

Conventions

a, b, … are input symbols.

…, X, Y, Z are tape symbols.

…, w, x, y, z are strings of input
symbols.

, ,… are strings of tape symbols.

26

The Transition Function

Takes two arguments:

1. A state, in Q.

2. A tape symbol in Γ.

δ(q, Z) is either undefined or a triple of

the form (p, Y, D).

p is a state.

Y is the new tape symbol.

D is a direction, L or R.

27

Example: Turing Machine

This TM scans its input right, looking for
a 1.

If it finds one, it changes it to a 0, goes
to final state f, and halts.

If it reaches a blank, it changes it to a 1
and moves left.

28

Example: Turing Machine – (2)

States = {q (start), f (final)}.

Input symbols = {0, 1}.

Tape symbols = {0, 1, B}.

δ(q, 0) = (q, 0, R).

δ(q, 1) = (f, 0, R).

δ(q, B) = (q, 1, L).

29

Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . . B B 0 0 B B . . .

q

30

Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . . B B 0 0 B B . . .

q

31

Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . . B B 0 0 B B . . .

q

32

Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . . B B 0 0 1 B . . .

q

33

Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . . B B 0 0 1 B . . .

q

34

Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . . B B 0 0 0 B . . .

f

No move is possible.
The TM halts and
accepts.

35

Instantaneous Descriptions of
a Turing Machine

Initially, a TM has a tape consisting of a
string of input symbols surrounded by
an infinity of blanks in both directions.

The TM is in the start state, and the
head is at the leftmost input symbol.

36

TM ID’s – (2)

An ID is a string q, where 
includes the tape between the leftmost
and rightmost nonblanks.

The state q is immediately to the left of
the tape symbol scanned.

If q is at the right end, it is scanning B.

If q is scanning a B at the left end, then
consecutive B’s at and to the right of q are
part of .

37

TM ID’s – (3)

As for PDA’s we may use symbols ⊦ and
⊦* to represent “becomes in one move”

and “becomes in zero or more moves,”
respectively, on ID’s.

Example: The moves of the previous TM
are q00⊦0q0⊦00q⊦0q01⊦00q1⊦000f

38

Formal Definition of Moves

1. If δ(q, Z) = (p, Y, R), then

qZ⊦Yp

If Z is the blank B, then also q⊦Yp

2. If δ(q, Z) = (p, Y, L), then

For any X, XqZ⊦pXY

In addition, qZ⊦pBY

39

Languages of a TM

A TM defines a language by final state,
as usual.

L(M) = {w | q0w⊦*I, where I is an ID

with a final state}.

Or, a TM can accept a language by
halting.

H(M) = {w | q0w⊦*I, and there is no

move possible from ID I}.

40

Equivalence of Accepting and
Halting

1. If L = L(M), then there is a TM M’
such that L = H(M’).

2. If L = H(M), then there is a TM M”
such that L = L(M”).

41

Proof of 1: Final State ->
Halting

Modify M to become M’ as follows:

1. For each final state of M, remove any moves,
so M’ halts in that state.

2. Avoid having M’ accidentally halt.

Introduce a new state s, which runs to the right
forever; that is δ(s, X) = (s, X, R) for all symbols X.

If q is not a final state, and δ(q, X) is undefined, let
δ(q, X) = (s, X, R).

42

Proof of 2: Halting -> Final
State

Modify M to become M” as follows:

1. Introduce a new state f, the only final
state of M”.

2. f has no moves.

3. If δ(q, X) is undefined for any state q and
symbol X, define it by δ(q, X) = (f, X, R).

43

Recursively Enumerable
Languages

We now see that the classes of
languages defined by TM’s using final
state and halting are the same.

This class of languages is called the
recursively enumerable languages.

Why? The term actually predates the
Turing machine and refers to another
notion of computation of functions.

44

Recursive Languages

An algorithm is a TM, accepting by final
state, that is guaranteed to halt
whether or not it accepts.

If L = L(M) for some TM M that is an
algorithm, we say L is a recursive
language.

Why? Again, don’t ask; it is a term with a
history.

45

Example: Recursive
Languages

Every CFL is a recursive language.

Use the CYK algorithm.

Almost anything you can think of is
recursive.

46

More About Turing Machines

“Programming Tricks”

Restrictions

Extensions

Closure Properties

47

Programming Trick: Multiple Tracks

Think of tape symbols as vectors with k
components, each chosen from a finite
alphabet.

Makes the tape appear to have k tracks.

Let input symbols be blank in all but one
track.

48

Picture of Multiple Tracks

q

X

Y

Z

Represents one symbol [X,Y,Z]

0

B

B

Represents
input symbol 0

B

B

B

Represents
the blank

49

Programming Trick: Marking

A common use for an extra track is to
mark certain positions.

Almost all tape squares hold B (blank)
in this track, but several hold special
symbols (marks) that allow the TM to
find particular places on the tape.

50

Marking

q

X

Y

B

Z

B

W

Marked Y

Unmarked
W and Z

51

Programming Trick: Caching in
the State

The state can also be a vector.

First component is the “control state.”

Other components hold data from a
finite alphabet.

52

Example: Using These Tricks

This TM doesn’t do anything terribly
useful; it copies its input w infinitely.

Control states:

q: Mark your position and remember the
input symbol seen.

p: Run right, remembering the symbol and
looking for a blank. Deposit symbol.

r: Run left, looking for the mark.

53

Example – (2)

States have the form [x, Y], where x is
q, p, or r and Y is 0, 1, or B.

Only p uses 0 and 1.

Tape symbols have the form [U, V].

U is either X (the “mark”) or B.

V is 0, 1 (the input symbols) or B.

[B, B] is the TM blank; [B, 0] and [B, 1]
are the inputs.

54

The Transition Function

Convention: a and b each stand for
“either 0 or 1.”

δ([q,B], [B,a]) = ([p,a], [X,a], R).

In state q, copy the input symbol under
the head (i.e., a) into the state.

Mark the position read.

Go to state p and move right.

55

Transition Function – (2)

δ([p,a], [B,b]) = ([p,a], [B,b], R).

In state p, search right, looking for a blank
symbol (not just B in the mark track).

δ([p,a], [B,B]) = ([r,B], [B,a], L).

When you find a B, replace it by the
symbol (a) carried in the “cache.”

Go to state r and move left.

56

Transition Function – (3)

δ([r,B], [B,a]) = ([r,B], [B,a], L).

In state r, move left, looking for the mark.

δ([r,B], [X,a]) = ([q,B], [B,a], R).

When the mark is found, go to state q and
move right.

But remove the mark from where it was.

q will place a new mark and the cycle
repeats.

57

Simulation of the TM

q

B

. . . B B B B . . .

. . . 0 1 B B . . .

58

Simulation of the TM

p

0

. . . X B B B . . .

. . . 0 1 B B . . .

59

Simulation of the TM

p

0

. . . X B B B . . .

. . . 0 1 B B . . .

60

Simulation of the TM

r

B

. . . X B B B . . .

. . . 0 1 0 B . . .

61

Simulation of the TM

r

B

. . . X B B B . . .

. . . 0 1 0 B . . .

62

Simulation of the TM

q

B

. . . B B B B . . .

. . . 0 1 0 B . . .

63

Simulation of the TM

p

1

. . . B X B B . . .

. . . 0 1 0 B . . .

64

Semi-infinite Tape

We can assume the TM never moves
left from the initial position of the head.

Let this position be 0; positions to the
right are 1, 2, … and positions to the
left are –1, –2, …

New TM has two tracks.

Top holds positions 0, 1, 2, …

Bottom holds a marker, positions –1, –2, …

65

Simulating Infinite Tape by
Semi-infinite Tape

0 1 2 3 . . .

* -1 -2 -3 . . .

q

U/L

State remembers whether
simulating upper or lower
track. Reverse directions
for lower track.

Put * here
at the first
move

You don’t need to do anything,
because these are initially B.

66

More Restrictions

Two stacks can simulate one tape.

One holds positions to the left of the head;
the other holds positions to the right.

In fact, by a clever construction, the
two stacks to be counters = only two
stack symbols, one of which can only
appear at the bottom.

Factoid: Invented by Pat Fischer,
whose main claim to fame is that
he was a victim of the Unabomber.

67

Extensions

More general than the standard TM.

But still only able to define the RE
languages.

1. Multitape TM.

2. Nondeterministic TM.

3. Store for name-value pairs.

68

Multitape Turing Machines

Allow a TM to have k tapes for any fixed
k.

Move of the TM depends on the state
and the symbols under the head for
each tape.

In one move, the TM can change state,
write symbols under each head, and
move each head independently.

69

Simulating k Tapes by One

Use 2k tracks.

Each tape of the k-tape machine is
represented by a track.

The head position for each track is
represented by a mark on an additional
track.

70

Picture of Multitape Simulation

q

X head for tape 1

. . . A B C A C B . . . tape 1

X head for tape 2

. . . U V U U W V . . . tape 2

71

Nondeterministic TM’s

Allow the TM to have a choice of move
at each step.

Each choice is a state-symbol-direction
triple, as for the deterministic TM.

The TM accepts its input if any
sequence of choices leads to an
accepting state.

72

Simulating a NTM by a DTM

The DTM maintains on its tape a
queue of ID’s of the NTM.

A second track is used to mark certain
positions:

1. A mark for the ID at the head of the
queue.

2. A mark to help copy the ID at the head
and make a one-move change.

73

Picture of the DTM Tape

ID0 # ID1 # … # IDk # IDk+1 … # IDn # New ID

X

Front of
queue

Y

Where you are
copying IDk with
a move

Rear of
queue

74

Operation of the Simulating DTM

The DTM finds the ID at the current
front of the queue.

It looks for the state in that ID so it can
determine the moves permitted from
that ID.

If there are m possible moves, it
creates m new ID’s, one for each move,
at the rear of the queue.

75

Operation of the DTM – (2)

The m new ID’s are created one at a
time.

After all are created, the marker for the
front of the queue is moved one ID
toward the rear of the queue.

However, if a created ID has an
accepting state, the DTM instead
accepts and halts.

76

Why the NTM -> DTM
Construction Works

There is an upper bound, say k, on the
number of choices of move of the NTM
for any state/symbol combination.

Thus, any ID reachable from the initial
ID by n moves of the NTM will be
constructed by the DTM after
constructing at most (kn+1-k)/(k-1)ID’s.

Sum of k+k2+…+kn

77

Why? – (2)

If the NTM accepts, it does so in some
sequence of n choices of move.

Thus the ID with an accepting state will
be constructed by the DTM in some
large number of its own moves.

If the NTM does not accept, there is no
way for the DTM to accept.

78

Taking Advantage of Extensions

We now have a really good situation.

When we discuss construction of
particular TM’s that take other TM’s as
input, we can assume the input TM is
as simple as possible.

E.g., one, semi-infinite tape, deterministic.

But the simulating TM can have many
tapes, be nondeterministic, etc.

79

Simulating a Name-Value
Store by a TM

The TM uses one of several tapes to
hold an arbitrarily large sequence of
name-value pairs in the format
#name*value#…

Mark, using a second track, the left end
of the sequence.

A second tape can hold a name whose
value we want to look up.

80

Lookup

Starting at the left end of the store,
compare the lookup name with each
name in the store.

When we find a match, take what
follows between the * and the next #
as the value.

81

Insertion

Suppose we want to insert name-value
pair (n, v), or replace the current value
associated with name n by v.

Perform lookup for name n.

If not found, add n*v# at the end of
the store.

82

Insertion – (2)

If we find #n*v’#, we need to replace
v’ by v.

If v is shorter than v’, you can leave
blanks to fill out the replacement.

But if v is longer than v’, you need to
make room.

83

Insertion – (3)

Use a third tape to copy everything from
the first tape to the right of v’.

Mark the position of the * to the left of v’
before you do.

On the first tape, write v just to the left
of that star.

Copy from the third tape to the first,
leaving enough room for v.

84

Picture of Shifting Right

. . . # n * v’ # blah blah blah . . .Tape 1

blah blah blah . . .Tape 3

v

85

Picture of Shifting Right

. . . # n * # blah blah blah . . .Tape 1

blah blah blah . . .Tape 3

v

86

Closure Properties of
Recursive and RE Languages

Both closed under union, concatenation,
star, reversal, intersection, inverse
homomorphism.

Recursive closed under difference,
complementation.

RE closed under homomorphism.

87

Union

Let L1 = L(M1) and L2 = L(M2).

Assume M1 and M2 are single-semi-
infinite-tape TM’s.

Construct 2-tape TM M to copy its input
onto the second tape and simulate the
two TM’s M1 and M2 each on one of the
two tapes, “in parallel.”

88

Union – (2)

Recursive languages: If M1 and M2 are
both algorithms, then M will always halt
in both simulations.

RE languages: accept if either accepts,
but you may find both TM’s run forever
without halting or accepting.

89

Picture of Union/Recursive

M1

M2

Input w

Accept

Accept

Reject

Reject

OR

Reject

Accept

AND

M

Remember: = “halt
without accepting

90

Picture of Union/RE

M1

M2

Input w

Accept

Accept

OR Accept

M

91

Intersection/Recursive – Same Idea

M1

M2

Input w

Accept

Accept

Reject

Reject

AND

Reject

Accept

OR

M

92

Intersection/RE

M1

M2

Input w

Accept

Accept

AND Accept

M

93

Difference, Complement

Recursive languages: both TM’s will
eventually halt.

Accept if M1 accepts and M2 does not.

Corollary: Recursive languages are closed
under complementation.

RE Languages: can’t do it; M2 may
never halt, so you can’t be sure input is
in the difference.

94

Concatenation/RE

Let L1 = L(M1) and L2 = L(M2).

Assume M1 and M2 are single-semi-
infinite-tape TM’s.

Construct 2-tape Nondeterministic TM M:

1. Guess a break in input w = xy.

2. Move y to second tape.

3. Simulate M1 on x, M2 on y.

4. Accept if both accept.

95

Concatenation/Recursive

Can’t use a NTM.

Systematically try each break w = xy.

M1 and M2 will eventually halt for each
break.

Accept if both accept for any one break.

Reject if all breaks tried and none lead
to acceptance.

96

Star

Same ideas work for each case.

RE: guess many breaks, accept if M1

accepts each piece.

Recursive: systematically try all ways to
break input into some number of
pieces.

97

Reversal

Start by reversing the input.

Then simulate TM for L to accept w if
and only wR is in L.

Works for either Recursive or RE
languages.

98

Inverse Homomorphism

Apply h to input w.

Simulate TM for L on h(w).

Accept w iff h(w) is in L.

Works for Recursive or RE.

99

Homomorphism/RE

Let L = L(M1).

Design NTM M to take input w and
guess an x such that h(x) = w.

M accepts whenever M1 accepts x.

Note: won’t work for Recursive
languages.

