
1

Undecidability

Everything is an Integer

Countable and Uncountable Sets

Turing Machines

Recursive and Recursively 
Enumerable Languages
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Integers, Strings, and Other Things

Data types have become very important 
as a programming tool.

But at another level, there is only one 
type, which you may think of as 
integers or strings.

Key point: Strings that are programs are 
just another way to think about the 
same one data type.
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Example: Text

Strings of ASCII or Unicode characters 
can be thought of as binary strings, 
with 8 or 16 bits/character.

Binary strings can be thought of as 
integers.

It makes sense to talk about “the i-th 
string.”



4

Binary Strings to Integers

There’s a small glitch:

If you think simply of binary integers, then 
strings like 101, 0101, 00101,… all appear 
to be “the fifth string.”

Fix by prepending a “1” to the string 
before converting to an integer.

Thus, 101, 0101, and 00101 are the 13th, 
21st, and 37th strings, respectively.
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Example: Images

Represent an image in (say) GIF.

The GIF file is an ASCII string.

Convert string to binary.

Convert binary string to integer.

Now we have a notion of “the i-th 
image.”
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Example: Proofs

A formal proof is a sequence of logical 
expressions, each of which follows from 
the ones before it.

Encode mathematical expressions of 
any kind in Unicode.

Convert expression to a binary string 
and then an integer.
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Proofs – (2)

But a proof is a sequence of 
expressions, so we need a way to 
separate them.

Also, we need to indicate which 
expressions are given and which follow 
from previous expressions.
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Proofs – (3)

Quick-and-dirty way to introduce new 
symbols into binary strings:

1. Given a binary string, precede each bit by 0.

Example: 101 becomes 010001.

2. Use strings of two or more 1’s as the special 
symbols.

Example: 111 = “the following expression is 
given”; 11 = “end of expression.”
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Example: Encoding Proofs

1110100011111100000101110101…

A given
expression
follows

An ex-
pression

End of
expression

Notice this
1 could not
be part of
the “end”

A given
expression
follows

Expression

End
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Example: Programs

Programs are just another kind of data.

Represent a program in ASCII.

Convert to a binary string, then to an 
integer.

Thus, it makes sense to talk about “the 
i-th program.”

Hmm…There aren’t all that many 
programs.
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Finite Sets

A finite set has a particular integer that 
is the count of the number of members.

Example: {a, b, c} is a finite set; its 
cardinality is 3.

It is impossible to find a 1-1 mapping 
between a finite set and a proper 
subset of itself.
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Infinite Sets

Formally, an infinite set is a set for which 
there is a 1-1 correspondence between 
itself and a proper subset of itself.

Example: the positive integers {1, 2, 3,…} 
is an infinite set.

There is a 1-1 correspondence 1<->2, 2<->4, 
3<->6,… between this set and a proper 
subset (the set of even integers).
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Countable Sets

A countable set is a set with a 1-1 
correspondence with the positive integers.

Hence, all countable sets are infinite.

Example: All integers.

0<->1; -i <-> 2i; +i <-> 2i+1.

Thus, order is 0, -1, 1, -2, 2, -3, 3,…

Examples: set of binary strings, set of Java 
programs.
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Example: Pairs of Integers

Order the pairs of positive integers first 
by sum, then by first component:

[1,1], [2,1], [1,2], [3,1], [2,2], [1,3], 
[4,1], [3,2],…, [1,4], [5,1],…

Interesting exercise: figure out the 
function f(i,j) such that the pair [i,j] 
corresponds to the integer f(i,j) in this 
order.
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Enumerations

An enumeration of a set is a 1-1 
correspondence between the set and 
the positive integers.

Thus, we have seen enumerations for 
strings, programs, proofs, and pairs of 
integers.
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How Many Languages?

Are the languages over {0,1} countable?

No; here’s a proof.

Suppose we could enumerate all 
languages over {0,1} and talk about “the 
i-th language.”

Consider the language L = { w | w is the 
i-th binary string and w is not in the i-th 
language}.
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Proof – Continued

Clearly, L is a language over {0,1}.

Thus, it is the j-th language for some 
particular j.

Let x be the j-th string.

Is x in L?

If so, x is not in L by definition of L.

If not, then x is in L by definition of L.

Recall: L = { w | w is the
i-th binary string and w is
not in the i-th language}.

x

j-th

Lj
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Proof – Concluded

We have a contradiction: x is neither in 
L nor not in L, so our sole assumption 
(that there was an enumeration of the 
languages) is wrong.

Comment: This is really bad; there are 
more languages than programs.

E.g., there are languages with no 
membership algorithm.
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Diagonalization Picture

Strings

1     2     3    4     5  …

1

12

3

4

5

…

Languages

0

111

1

0

00 …

…
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Diagonalization Picture

Strings

1     2     3    4     5  …

1

02

3

4

5

…

Languages

1

110

0

1

00 …

…

Flip each
diagonal
entry

Can’t be
a row –
it disagrees
in an entry
of each row.
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Turing-Machine Theory

The purpose of the theory of Turing 
machines is to prove that certain 
specific languages have no algorithm.

Start with a language about Turing 
machines themselves.

Reductions are used to prove more 
common questions undecidable.
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Picture of a Turing Machine

State

. . . . . .A B C A D

Infinite tape with
squares containing
tape symbols chosen
from a finite alphabet

Action: based on
the state and the
tape symbol under
the head: change
state, rewrite the
symbol and move the
head one square.
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Why Turing Machines?

Why not deal with C programs or 
something like that?

Answer: You can, but it is easier to prove 
things about TM’s, because they are so 
simple.

And yet they are as powerful as any 
computer.

• More so, in fact, since they have infinite memory.
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Turing-Machine Formalism

A TM is described by:

1. A finite set of states (Q, typically).

2. An input alphabet (Σ, typically).

3. A tape alphabet (Γ, typically; contains Σ).

4. A transition function (δ, typically).

5. A start state (q0, in Q, typically).

6. A blank symbol (B, in Γ- Σ, typically).

All tape except for the input is blank initially.

7. A set of final states (F ⊆ Q, typically).
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Conventions

a, b, … are input symbols.

…, X, Y, Z are tape symbols.

…, w, x, y, z are strings of input 
symbols.

, ,… are strings of tape symbols.
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The Transition Function

Takes two arguments:

1. A state, in Q.

2. A tape symbol in Γ.

δ(q, Z) is either undefined or a triple of 

the form (p, Y, D).

p is a state.

Y is the new tape symbol.

D is a direction, L or R.
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Example: Turing Machine

This TM scans its input right, looking for 
a 1.

If it finds one, it changes it to a 0, goes 
to final state f, and halts.

If it reaches a blank, it changes it to a 1 
and moves left.
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Example: Turing Machine – (2)

States = {q (start), f (final)}.

Input symbols = {0, 1}.

Tape symbols = {0, 1, B}.

δ(q, 0) = (q, 0, R).

δ(q, 1) = (f, 0, R).

δ(q, B) = (q, 1, L).
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Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . .  B  B  0  0  B  B  . . .

q
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Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . .  B  B  0  0  B  B  . . .

q
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Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . .  B  B  0  0  B  B  . . .

q
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Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . .  B  B  0  0  1  B  . . .

q
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Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . .  B  B  0  0  1  B  . . .

q
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Simulation of TM
δ(q, 0) = (q, 0, R)

δ(q, 1) = (f, 0, R)

δ(q, B) = (q, 1, L)

. . .  B  B  0  0  0  B  . . .

f

No move is possible.
The TM halts and
accepts.
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Instantaneous Descriptions of 
a Turing Machine

Initially, a TM has a tape consisting of a 
string of input symbols surrounded by 
an infinity of blanks in both directions.

The TM is in the start state, and the 
head is at the leftmost input symbol.
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TM ID’s – (2)

An ID is a string q, where 
includes the tape between the leftmost 
and rightmost nonblanks.

The state q is immediately to the left of 
the tape symbol scanned.

If q is at the right end, it is scanning B.

If q is scanning a B at the left end, then 
consecutive B’s at and to the right of q are 
part of .
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TM ID’s – (3)

As for PDA’s we may use symbols ⊦ and 
⊦* to represent “becomes in one move” 

and “becomes in zero or more moves,” 
respectively, on ID’s.

Example: The moves of the previous TM 
are q00⊦0q0⊦00q⊦0q01⊦00q1⊦000f
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Formal Definition of Moves

1. If δ(q, Z) = (p, Y, R), then

qZ⊦Yp

If Z is the blank B, then also q⊦Yp

2. If δ(q, Z) = (p, Y, L), then

For any X, XqZ⊦pXY

In addition, qZ⊦pBY
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Languages of a TM

A TM defines a language by final state, 
as usual.

L(M) = {w | q0w⊦*I, where I is an ID 

with a final state}.

Or, a TM can accept a language by 
halting.

H(M) = {w | q0w⊦*I, and there is no 

move possible from ID I}.
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Equivalence of Accepting and 
Halting

1. If L = L(M), then there is a TM M’ 
such that L = H(M’).

2. If L = H(M), then there is a TM M” 
such that L = L(M”).
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Proof of 1: Final State -> 
Halting

Modify M to become M’ as follows:

1. For each final state of M, remove any moves, 
so M’ halts in that state.

2. Avoid having M’ accidentally halt.

Introduce a new state s, which runs to the right 
forever; that is δ(s, X) = (s, X, R) for all symbols X.

If q is not a final state, and δ(q, X) is undefined, let 
δ(q, X) = (s, X, R).
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Proof of 2: Halting -> Final 
State

Modify M to become M” as follows:

1. Introduce a new state f, the only final 
state of M”.

2. f has no moves.

3. If δ(q, X) is undefined for any state q and 
symbol X, define it by δ(q, X) = (f, X, R).



43

Recursively Enumerable 
Languages

We now see that the classes of 
languages defined by TM’s using final 
state and halting are the same.

This class of languages is called the 
recursively enumerable languages.

Why?  The term actually predates the 
Turing machine and refers to another 
notion of computation of functions.
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Recursive Languages

An algorithm  is a TM, accepting by final 
state, that is guaranteed to halt 
whether or not it accepts.

If L = L(M) for some TM M that is an   
algorithm, we say L is a recursive 
language.

Why?  Again, don’t ask; it is a term with a 
history.
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Example: Recursive 
Languages

Every CFL is a recursive language.

Use the CYK algorithm.

Almost anything you can think of is 
recursive.
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More About Turing Machines

“Programming Tricks”

Restrictions

Extensions

Closure Properties
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Programming Trick: Multiple Tracks

Think of tape symbols as vectors with k 
components, each chosen from a finite 
alphabet.

Makes the tape appear to have k tracks.

Let input symbols be blank in all but one 
track.
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Picture of Multiple Tracks

q

X

Y

Z

Represents one symbol [X,Y,Z]

0

B

B

Represents
input symbol 0

B

B

B

Represents
the blank
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Programming Trick: Marking

A common use for an extra track is to 
mark certain positions.

Almost all tape squares hold B (blank) 
in this track, but several hold special 
symbols (marks) that allow the TM to 
find particular places on the tape.
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Marking

q

X

Y

B

Z

B

W

Marked Y

Unmarked
W and Z
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Programming Trick: Caching in 
the State

The state can also be a vector.

First component is the “control state.”

Other components hold data from a 
finite alphabet.
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Example: Using These Tricks

This TM doesn’t do anything terribly 
useful; it copies its input w infinitely.

Control states:

q: Mark your position and remember the 
input symbol seen.

p: Run right, remembering the symbol and 
looking for a blank.  Deposit symbol.

r: Run left, looking for the mark.
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Example – (2)

States have the form [x, Y], where x is 
q, p, or r and Y is 0, 1, or B.

Only p uses 0 and 1.

Tape symbols have the form [U, V].

U is either X (the “mark”) or B.

V is 0, 1 (the input symbols) or B.

[B, B] is the TM blank; [B, 0] and [B, 1] 
are the inputs.
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The Transition Function

Convention: a and b each stand for 
“either 0 or 1.”

δ([q,B], [B,a]) = ([p,a], [X,a], R).

In state q, copy the input symbol under 
the head (i.e., a ) into the state.

Mark the position read.

Go to state p and move right.
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Transition Function – (2)

δ([p,a], [B,b]) = ([p,a], [B,b], R).

In state p, search right, looking for a blank 
symbol (not just B in the mark track).

δ([p,a], [B,B]) = ([r,B], [B,a], L).

When you find a B, replace it by the 
symbol (a ) carried in the “cache.”

Go to state r and move left.
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Transition Function – (3)

δ([r,B], [B,a]) = ([r,B], [B,a], L).

In state r, move left, looking for the mark.

δ([r,B], [X,a]) = ([q,B], [B,a], R).

When the mark is found, go to state q and 
move right.

But remove the mark from where it was.

q will place a new mark and the cycle 
repeats.
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Simulation of the TM

q

B

. . . B   B   B   B  . . .

. . . 0   1   B   B  . . .
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Simulation of the TM

p

0

. . . X   B   B   B  . . .

. . . 0   1   B   B  . . .
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Simulation of the TM

p

0

. . . X   B   B   B  . . .

. . . 0   1   B   B  . . .
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Simulation of the TM

r

B

. . . X   B   B   B  . . .

. . . 0   1   0   B  . . .
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Simulation of the TM

r

B

. . . X   B   B   B  . . .

. . . 0   1   0   B  . . .
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Simulation of the TM

q

B

. . . B   B   B   B  . . .

. . . 0   1   0   B  . . .
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Simulation of the TM

p

1

. . . B   X   B   B  . . .

. . . 0   1   0   B  . . .
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Semi-infinite Tape

We can assume the TM never moves 
left from the initial position of the head.

Let this position be 0; positions to the 
right are 1, 2, … and positions to the 
left are –1, –2, …

New TM has two tracks.

Top holds positions 0, 1, 2, …

Bottom holds a marker, positions –1, –2, …
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Simulating Infinite Tape by 
Semi-infinite Tape

0   1   2   3   . . .

*  -1  -2  -3  . . .

q

U/L

State remembers whether
simulating upper or lower
track.  Reverse directions
for lower track.

Put * here
at the first
move

You don’t need to do anything,
because these are initially B.
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More Restrictions

Two stacks can simulate one tape.

One holds positions to the left of the head; 
the other holds positions to the right.

In fact, by a clever construction, the 
two stacks to be counters = only two 
stack symbols, one of which can only 
appear at the bottom. 

Factoid: Invented by Pat Fischer,
whose main claim to fame is that
he was a victim of the Unabomber.
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Extensions

More general than the standard TM.

But still only able to define the RE 
languages.

1. Multitape TM.

2. Nondeterministic TM.

3. Store for name-value pairs.
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Multitape Turing Machines

Allow a TM to have k tapes for any fixed 
k.

Move of the TM depends on the state 
and the symbols under the head for 
each tape.

In one move, the TM can change state, 
write symbols under each head, and 
move each head independently.
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Simulating k Tapes by One

Use 2k tracks.

Each tape of the k-tape machine is 
represented by a track.

The head position for each track is 
represented by a mark on an additional 
track.
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Picture of Multitape Simulation

q

X                        head for tape 1

. . .  A   B   C   A   C   B   . . .     tape 1

X              head for tape 2

. . .  U   V   U   U  W   V   . . .    tape 2
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Nondeterministic TM’s

Allow the TM to have a choice of move 
at each step.

Each choice is a state-symbol-direction 
triple, as for the deterministic TM.

The TM accepts its input if any 
sequence of choices leads to an 
accepting state.
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Simulating a NTM by a DTM

The DTM maintains on its tape a 
queue of ID’s of the NTM.

A second track is used to mark certain 
positions:

1. A mark for the ID at the head of the 
queue.

2. A mark to help copy the ID at the head 
and make a one-move change.
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Picture of the DTM Tape

ID0 # ID1 # …  # IDk # IDk+1 …        # IDn # New ID

X

Front of
queue

Y

Where you are
copying IDk with 
a move

Rear of
queue



74

Operation of the Simulating DTM

The DTM finds the ID at the current 
front of the queue.

It looks for the state in that ID so it can 
determine the moves permitted from 
that ID.

If there are m possible moves, it 
creates m new ID’s, one for each move, 
at the rear of the queue.
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Operation of the DTM – (2)

The m new ID’s are created one at a 
time.

After all are created, the marker for the 
front of the queue is moved one ID 
toward the rear of the queue.

However, if a created ID has an 
accepting state, the DTM instead 
accepts and halts.
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Why the NTM -> DTM 
Construction Works

There is an upper bound, say k, on the 
number of choices of move of the NTM 
for any state/symbol combination.

Thus, any ID reachable from the initial 
ID by n moves of the NTM will be 
constructed by the DTM after 
constructing at most (kn+1-k)/(k-1)ID’s. 

Sum of k+k2+…+kn
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Why? – (2)

If the NTM accepts, it does so in some 
sequence of n choices of move.

Thus the ID with an accepting state will 
be constructed by the DTM in some 
large number of its own moves.

If the NTM does not accept, there is no 
way for the DTM to accept.
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Taking Advantage of Extensions

We now have a really good situation.

When we discuss construction of 
particular TM’s that take other TM’s as 
input, we can assume the input TM is 
as simple as possible.

E.g., one, semi-infinite tape, deterministic.

But the simulating TM can have many 
tapes, be nondeterministic, etc.
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Simulating a Name-Value
Store by a TM

The TM uses one of several tapes to 
hold an arbitrarily large sequence of 
name-value pairs in the format 
#name*value#…

Mark, using a second track, the left end 
of the sequence.

A second tape can hold a name whose 
value we want to look up.
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Lookup

Starting at the left end of the store, 
compare the lookup name with each 
name in the store.

When we find a match, take what 
follows between the * and the next # 
as the value.
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Insertion

Suppose we want to insert name-value 
pair (n, v), or replace the current value 
associated with name n by v.

Perform lookup for name n.

If not found, add n*v# at the end of 
the store.
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Insertion – (2)

If we find #n*v’#, we need to replace 
v’ by v.

If v is shorter than v’, you can leave 
blanks to fill out the replacement.

But if v is longer than v’, you need to 
make room.



83

Insertion – (3)

Use a third tape to copy everything from 
the first tape to the right of v’.

Mark the position of the * to the left of v’ 
before you do.

On the first tape, write v just to the left 
of that star.

Copy from the third tape to the first, 
leaving enough room for v.
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Picture of Shifting Right

. . . # n * v’ # blah blah blah . . .Tape 1

# blah blah blah . . .Tape 3

v



85

Picture of Shifting Right

. . . # n *                 # blah blah blah . . .Tape 1

# blah blah blah . . .Tape 3

v
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Closure Properties of 
Recursive and RE Languages

Both closed under union, concatenation, 
star, reversal, intersection, inverse 
homomorphism.

Recursive closed under difference, 
complementation.

RE closed under homomorphism.
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Union

Let L1 = L(M1) and L2 = L(M2).

Assume M1 and M2 are single-semi-
infinite-tape TM’s.

Construct 2-tape TM M to copy its input 
onto the second tape and simulate the 
two TM’s M1 and M2 each on one of the 
two tapes, “in parallel.”
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Union – (2)

Recursive languages: If M1 and M2 are 
both algorithms, then M will always halt 
in both simulations.

RE languages: accept if either accepts, 
but you may find both TM’s run forever 
without halting or accepting.
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Picture of Union/Recursive

M1

M2

Input w

Accept

Accept

Reject

Reject

OR

Reject

Accept

AND

M

Remember: = “halt
without accepting
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Picture of Union/RE

M1

M2

Input w

Accept

Accept

OR Accept

M
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Intersection/Recursive – Same Idea

M1

M2

Input w

Accept

Accept

Reject

Reject

AND

Reject

Accept

OR

M
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Intersection/RE

M1

M2

Input w

Accept

Accept

AND Accept

M
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Difference, Complement

Recursive languages: both TM’s will 
eventually halt.

Accept if M1 accepts and M2 does not.

Corollary: Recursive languages are closed 
under complementation.

RE Languages: can’t do it; M2 may 
never halt, so you can’t be sure input is 
in the difference.
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Concatenation/RE

Let L1 = L(M1) and L2 = L(M2).

Assume M1 and M2 are single-semi-
infinite-tape TM’s.

Construct 2-tape Nondeterministic TM M:

1. Guess a break in input w = xy.

2. Move y to second tape.

3. Simulate M1 on x, M2 on y.

4. Accept if both accept.
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Concatenation/Recursive

Can’t use a NTM.

Systematically try each break w = xy.

M1 and M2 will eventually halt for each 
break.

Accept if both accept for any one break.

Reject if all breaks tried and none lead 
to acceptance.
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Star

Same ideas work for each case.

RE: guess many breaks, accept if M1

accepts each piece.

Recursive: systematically try all ways to 
break input into some number of 
pieces.
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Reversal

Start by reversing the input.

Then simulate TM for L to accept w if 
and only wR is in L.

Works for either Recursive or RE 
languages.
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Inverse Homomorphism

Apply h to input w.

Simulate TM for L on  h(w).

Accept w iff h(w) is in L.

Works for Recursive or RE.
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Homomorphism/RE

Let L = L(M1).

Design NTM M to take input w and 
guess an x such that h(x) = w.

M accepts whenever M1 accepts x.

Note: won’t work for Recursive 
languages.


