
1

Pushdown Automata

Definition

Moves of the PDA

Languages of the PDA

Deterministic PDA’s

2

Pushdown Automata

The PDA is an automaton equivalent to
the CFG in language-defining power.

Only the nondeterministic PDA defines all
the CFL’s.

But the deterministic version models
parsers.

Most programming languages have
deterministic PDA’s.

3

Intuition: PDA

Think of an ε-NFA with the additional

power that it can manipulate a stack.

Its moves are determined by:

1. The current state (of its “NFA”),

2. The current input symbol (or ε), and

3. The current symbol on top of its stack.

4

Picture of a PDA

q

0 1 1 1

X
Y
Z

State

Stack

Top of Stack

Input
Next input
symbol

5

Intuition: PDA – (2)

Being nondeterministic, the PDA can
have a choice of next moves.

In each choice, the PDA can:

1. Change state, and also

2. Replace the top symbol on the stack by a
sequence of zero or more symbols.

Zero symbols = “pop.”

Many symbols = sequence of “pushes.”

6

PDA Formalism

A PDA is described by:

1. A finite set of states (Q, typically).

2. An input alphabet (Σ, typically).

3. A stack alphabet (Γ, typically).

4. A transition function (δ, typically).

5. A start state (q0, in Q, typically).

6. A start symbol (Z0, in Γ, typically).

7. A set of final states (F ⊆ Q, typically).

7

Conventions

a, b, … are input symbols.
But sometimes we allow ε as a possible

value.

…, X, Y, Z are stack symbols.

…, w, x, y, z are strings of input
symbols.

, ,… are strings of stack symbols.

8

The Transition Function

Takes three arguments:

1. A state, in Q.

2. An input, which is either a symbol in Σ or
ε.

3. A stack symbol in Γ.

δ(q, a, Z) is a set of zero or more

actions of the form (p, ).

p is a state;  is a string of stack symbols.

9

Actions of the PDA

If δ(q, a, Z) contains (p, ) among its

actions, then one thing the PDA can
do in state q, with a at the front of
the input, and Z on top of the stack is:

1. Change the state to p.

2. Remove a from the front of the input
(but a may be ε).

3. Replace Z on the top of the stack by .

10

Example: PDA

Design a PDA to accept {0n1n | n > 1}.

The states:

q = start state. We are in state q if we
have seen only 0’s so far.

p = we’ve seen at least one 1 and may
now proceed only if the inputs are 1’s.

f = final state; accept.

11

Example: PDA – (2)

The stack symbols:

Z0 = start symbol. Also marks the bottom
of the stack, so we know when we have
counted the same number of 1’s as 0’s.

X = marker, used to count the number of
0’s seen on the input.

12

Example: PDA – (3)

The transitions:
δ(q, 0, Z0) = {(q, XZ0)}.

δ(q, 0, X) = {(q, XX)}. These two rules

cause one X to be pushed onto the stack
for each 0 read from the input.

δ(q, 1, X) = {(p, ε)}. When we see a 1,

go to state p and pop one X.

δ(p, 1, X) = {(p, ε)}. Pop one X per 1.

δ(p, ε, Z0) = {(f, Z0)}. Accept at bottom.

13

Actions of the Example PDA

q

0 0 0 1 1 1

Z0

14

Actions of the Example PDA

q

0 0 1 1 1

X
Z0

15

Actions of the Example PDA

q

0 1 1 1

X
X
Z0

16

Actions of the Example PDA

q

1 1 1

X
X
X
Z0

17

Actions of the Example PDA

p

1 1

X
X
Z0

18

Actions of the Example PDA

p

1

X
Z0

19

Actions of the Example PDA

p

Z0

20

Actions of the Example PDA

f

Z0

21

Instantaneous Descriptions

We can formalize the pictures just
seen with an instantaneous
description (ID).

A ID is a triple (q, w, ), where:

1. q is the current state.

2. w is the remaining input.

3.  is the stack contents, top at the left.

22

The “Goes-To” Relation

To say that ID I can become ID J in one
move of the PDA, we write I⊦J.

Formally, (q, aw, X)⊦(p, w, ) for any
w and , if δ(q, a, X) contains (p, ).

Extend ⊦ to ⊦*, meaning “zero or more

moves,” by:
Basis: I⊦*I.

Induction: If I⊦*J and J⊦K, then I⊦*K.

23

Example: Goes-To

Using the previous example PDA, we
can describe the sequence of moves by:
(q, 000111, Z0)⊦(q, 00111, XZ0)⊦
(q, 0111, XXZ0)⊦(q, 111, XXXZ0)⊦
(p, 11, XXZ0)⊦(p, 1, XZ0)⊦(p, ε, Z0)⊦
(f, ε, Z0)

Thus, (q, 000111, Z0)⊦*(f, ε, Z0).

What would happen on input 0001111?

24

Answer

(q, 0001111, Z0)⊦(q, 001111, XZ0)⊦
(q, 01111, XXZ0)⊦(q, 1111, XXXZ0)⊦
(p, 111, XXZ0)⊦(p, 11, XZ0)⊦(p, 1, Z0)⊦

(f, 1, Z0)

Note the last ID has no move.

0001111 is not accepted, because the
input is not completely consumed.

25

Language of a PDA

The common way to define the
language of a PDA is by final state.

If P is a PDA, then L(P) is the set of
strings w such that (q0, w, Z0) ⊦* (f,
ε, ) for final state f and any .

26

Language of a PDA – (2)

Another language defined by the same
PDA is by empty stack.

If P is a PDA, then N(P) is the set of
strings w such that (q0, w, Z0) ⊦*
(q, ε, ε) for any state q.

27

Equivalence of Language
Definitions

1. If L = L(P), then there is another PDA
P’ such that L = N(P’).

2. If L = N(P), then there is another PDA
P’’ such that L = L(P’’).

28

Proof: L(P) -> N(P’) Intuition

P’ will simulate P.

If P accepts, P’ will empty its stack.

P’ has to avoid accidentally emptying
its stack, so it uses a special bottom-
marker to catch the case where P
empties its stack without accepting.

29

Proof: L(P) -> N(P’)

P’ has all the states, symbols, and moves
of P, plus:

1. Stack symbol X0 (the start symbol of P’),
used to guard the stack bottom.

2. New start state s and “erase” state e.

3. δ(s, ε, X0) = {(q0, Z0X0)}. Get P started.

4. Add {(e, ε)} to δ(f, ε, X) for any final state f

of P and any stack symbol X, including X0.

5. δ(e, ε, X) = {(e, ε)} for any X.

30

Proof: N(P) -> L(P’’) Intuition

P” simulates P.

P” has a special bottom-marker to
catch the situation where P empties its
stack.

If so, P” accepts.

31

Proof: N(P) -> L(P’’)

P’’ has all the states, symbols, and
moves of P, plus:

1. Stack symbol X0 (the start symbol), used
to guard the stack bottom.

2. New start state s and final state f.

3. δ(s, ε, X0) = {(q0, Z0X0)}. Get P started.

4. δ(q, ε, X0) = {(f, ε)} for any state q of P.

32

Deterministic PDA’s

To be deterministic, there must be at
most one choice of move for any state
q, input symbol a, and stack symbol X.

In addition, there must not be a choice
between using input ε or real input.

Formally, δ(q, a, X) and δ(q, ε, X) cannot

both be nonempty.

33

Equivalence of PDA, CFG

Conversion of CFG to PDA

Conversion of PDA to CFG

34

Overview

When we talked about closure
properties of regular languages, it was
useful to be able to jump between RE
and DFA representations.

Similarly, CFG’s and PDA’s are both
useful to deal with properties of the
CFL’s.

35

Overview – (2)

Also, PDA’s, being “algorithmic,” are
often easier to use when arguing that a
language is a CFL.

Example: It is easy to see how a PDA
can recognize balanced parentheses;
not so easy as a grammar.

36

Converting a CFG to a PDA

Let L = L(G).

Construct PDA P such that N(P) = L.

P has:

One state q.

Input symbols = terminals of G.

Stack symbols = all symbols of G.

Start symbol = start symbol of G.

37

Intuition About P

At each step, P represents some left-
sentential form (step of a leftmost
derivation).

If the stack of P is , and P has so far
consumed x from its input, then P
represents left-sentential form x.

At empty stack, the input consumed is a
string in L(G).

38

Transition Function of P

1. δ(q, a, a) = (q, ε). (Type 1 rules)

This step does not change the LSF
represented, but “moves” responsibility for a
from the stack to the consumed input.

2. If A ->  is a production of G, then
δ(q, ε, A) contains (q, ). (Type 2 rules)

Guess a production for A, and represent the
next LSF in the derivation.

39

Proof That L(P) = L(G)

We need to show that (q, wx, S) ⊦* (q,

x, ) for any x if and only if S
=>*lm w.

Part 1: “only if” is an induction on the
number of steps made by P.

Basis: 0 steps.
Then  = S, w = ε, and S =>*lm S is surely

true.

40

Induction for Part 1

Consider n moves of P: (q, wx, S) ⊦*

(q, x, ) and assume the IH for
sequences of n-1 moves.

There are two cases, depending on
whether the last move uses a Type 1 or
Type 2 rule.

41

Use of a Type 1 Rule

The move sequence must be of the form
(q, yax, S) ⊦* (q, ax, a) ⊦ (q, x, ),

where ya = w.

By the IH applied to the first n-1 steps,
S =>*lm ya.

But ya = w, so S =>*lm w.

42

Use of a Type 2 Rule

The move sequence must be of the form
(q, wx, S) ⊦* (q, x, A) ⊦ (q, x, ),

where A ->  is a production and  = .

By the IH applied to the first n-1 steps,
S =>*lm wA.

Thus, S =>*lm w = w.

43

Proof of Part 2 (“if”)

We also must prove that if S =>*lm w,
then (q, wx, S) ⊦* (q, x, ) for any x.

Induction on number of steps in the
leftmost derivation.

Ideas are similar; omitted.

44

Proof – Completion

We now have (q, wx, S) ⊦* (q, x, ) for

any x if and only if S =>*lm w.

In particular, let x =  = ε.

Then (q, w, S) ⊦* (q, ε, ε) if and only if

S =>*lm w.

That is, w is in N(P) if and only if w is in
L(G).

45

From a PDA to a CFG

Now, assume L = N(P).

We’ll construct a CFG G such that L = L(G).

Intuition: G will have variables [pXq]
generating exactly the inputs that cause P to
have the net effect of popping stack symbol
X while going from state p to state q.

P never gets below this X while doing so.

46

Picture: Popping X

X

w

Stack
height

47

Variables of G

G’s variables are of the form [pXq].

This variable generates all and only the
strings w such that

(p, w, X) ⊦*(q, ε, ε).

Also a start symbol S we’ll talk about
later.

48

Productions of G

Each production for [pXq] comes from a
move of P in state p with stack symbol X.

Simplest case: δ(p, a, X) contains (q, ε).

Note a can be an input symbol or ε.

Then the production is [pXq] -> a.

Here, [pXq] generates a, because reading
a is one way to pop X and go from p to q.

49

Productions of G – (2)

Next simplest case: δ(p, a, X) contains

(r, Y) for some state r and symbol Y.

G has production [pXq] -> a[rYq].

We can erase X and go from p to q by
reading a (entering state r and replacing
the X by Y) and then reading some w that
gets P from r to q while erasing the Y.

50

Picture of the Action

X Y

a w
p r q

51

Productions of G – (3)

Third simplest case: δ(p, a, X) contains

(r, YZ) for some state r and symbols Y
and Z.

Now, P has replaced X by YZ.

To have the net effect of erasing X, P
must erase Y, going from state r to
some state s, and then erase Z, going
from s to q.

52

Picture of the Action

X Z Z

Y

p r s q

a u v

53

Third-Simplest Case – Concluded

Since we do not know state s, we must
generate a family of productions:

[pXq] -> a[rYs][sZq]

for all states s.

[pXq] =>* auv whenever [rYs] =>* u
and [sZq] =>* v.

54

Productions of G: General Case

Suppose δ(p, a, X) contains (r, Y1,…Yk)

for some state r and k > 3.

Generate family of productions

[pXq] ->

a[rY1s1][s1Y2s2]…[sk-2Yk-1sk-1][sk-1Ykq]

55

Completion of the Construction

We can prove that (q0, w, Z0)⊦*(p, ε, ε)

if and only if [q0Z0p] =>* w.

Proof is two easy inductions.

But state p can be anything.

Thus, add to G another variable S, the
start symbol, and add productions
S -> [q0Z0p] for each state p.

