Pushdown Automata

Definition
Moves of the PDA
Languages of the PDA
Deterministic PDA’s

Pushdown Automata

[0 The PDA is an automaton equivalent to
the CFG in language-defining power.

0 Only the nondeterministic PDA defines all
the CFLs.

[0 But the deterministic version models
parsers.

[0 Most programming languages have
deterministic PDA's.

Intuition: PDA

0 Think of an e-NFA with the additional
power that it can manipulate a stack.

0 Its moves are determined by:

1. The current state (of its "NFA"),
2. The current input symbol (or €), and

3. The current symbol on top of its stack.

Picture of a PDA
T 0111 Input

9 ™ state

X = Top of Stack

[ntuition: PDA — (2)

[0 Being nondeterministic, the PDA can
have a choice of next moves.

0 In each choice, the PDA can:
1. Change state, and also

2. Replace the top symbol on the stack by a
sequence of zero or more symbols.
0 Zero symbols = “pop.”
0 Many symbols = sequence of “pushes.”

PDA Formalism

[0 A PDA is described by:

NOoOU A WWNE

A finite set of states (Q, typically).
An /nput alphabet (Z, typically).

A stack alphabet (T, typically).

A transition function (9, typically).
A start state (qg, in Q, typically).
A start symbol (Z,, in T, typically).
A set of final states (F < Q, typically).

Conventions

O4a, b, ... are input symbols.
[0 But sometimes we allow € as a possible
value.

0..., X, Y, Z are stack symbols.

O..., W, X, ¥, z are strings of input
symbols.

0o, B,... are strings of stack symbols.

The Transition Function

0 Takes three arguments:

1. A state, in Q.
2. An input, which is either a symbol in 2 or
€

3. A stack symbol inT.
0 o(q, a, Z) is a set of zero or more

actions of the form (p, o).
0 pisa state; a is a string of stack symbols.

8

Actions of the PDA

O If o(qg, a, Z) contains (p, o) among its

actions, then one thing the PDA can
do in state g, with @ at the front of
the input, and Z on top of the stack is:
1. Change the state to p.

2. Remove a from the front of the input
(but @ may be €).

3. Replace Z on the top of the stack by o.

. PDA

[0 Design a PDA to accept {0"1" | n > 1}.
0 The states:

[0q = start state. We are in state g if we
have seen only 0’s so far.

O0p = we've seen at least one 1 and may
now proceed only if the inputs are 1°s.

Of = final state; accept.

10

. PDA — (2)

[0 The stack symbols:

0Z, = start symbol. Also marks the bottom
of the stack, so we know when we have
counted the same number of 1's as 0’s.

0 X = marker, used to count the number of
0’s seen on the input.

11

. PDA — (3)

[0 The transitions:
D 6(CII OI ZO) = {(ql XZO)}
00(qg, 0, X) = {(qg, XX)}. These two rules

cause one X to be pushed onto the stack
for each 0 read from the input.

00(q, 1, X) = {(p, €)}. When we see a1,
go to state p and pop one X.

d0o(p, 1, X) = {(p, €)}. Pop one X per 1.

00(p, €, Zy) = {(f, Z,)}. Accept at bottom.

12

Actions of the PDA

000111

|

g

|

Z

Actions of the PDA

PDA

Actions of the

0111

o
—» X X N

PDA

Actions of the

111

o
—— X X X N

Actions of the PDA

1

1
T
P
|
X
X
/

0

Actions of the PDA

1
T
P
|
X
Z

0

Actions of the PDA

N <«
-O—P

Actions of the PDA

N <
h>

Instantaneous Descriptions

0 We can formalize the pictures just
seen with an /nstantaneous
description (ID).

0 AIDis a triple (g, w, o), where:

1. qis the current state.
2. W is the remaining input.
3. o is the stack contents, top at the left.

21

The “"Goes-To” Relation

[0 To say that ID I can become ID J in one
move of the PDA, we write I+1J.

0 Formally, (g, aw, Xa)+(p, w, Ba) for any
w and o, if 0(q, a, X) contains (p, B).

[0 Extend + to +*, meaning “zero or more
moves,” by:
0 Basis: I+*I.
O Induction: If I-*J and J+K, then I+*K.

22

: Goes-To

[0 Using the previous example PDA, we

can describe the sequence of moves by:
(g, 000111, Z,)r(q, 00111, XZ,)F

(g, 0111, XXZ,)F(q, 111, XXXZ)+
(pl 11/ XXZO)l_(pI 1/ XZO)I_(pI €, ZO)l_
(fl EI ZO)

O Thus, (g, 000111, Z,)+-*(f, €, Z,).
0 What would happen on input 00011117

23

Answer

O0(q, 0001111, Z,)-(q, 001111, XZ,)+
(g, 01111, XXZ,)F(q, 1111, XXXZ,)+
(p, 111, XXZy)F(p, 11, XZy)+-(p, 1, Zy)F
(f, 1, Z)

[0 Note the last ID has no move.

00001111 is accepted, because the
input is not completely consumed.

24

Language of a PDA

[0 The common way to define the
language of a PDA is by /inal state.

O If P is a PDA, then L(P) is the set of
strings w such that (q,, w, Z;) +* (f,
€, o) for final state f and any .

25

Language of a PDA — (2)

[0 Another language defined by the same
PDA is by empty stack.

O If P is a PDA, then N(P) is the set of
strings w such that (qq, w, Z;) +*

(g, €, €) for any state q.

26

Equivalence of Language
Definitions

. If L = L(P), then there is another PDA
P’ such that L = N(P’).

. If L = N(P), then there is another PDA
P” such that L = L(P").

27

Proof: L(P) -> N(P") Intuition

P” will simulate P.
If P accepts, P’ will empty its stack.

P’ has to avoid accidentally emptying
its stack, so it uses a special bottom-
marker to catch the case where P
empties its stack without accepting.

28

Proof: L(P) -> N(P")

0 P’ has all the states, symbols, and moves
of P, plus:

1.

2.
3.

. Add {(e, €)} to d(f, €, X) for any final state f

Stack symbol X, (the start symbol of P’),
used to guard the stack bottom.

New start state s and “erase” state e.
o(s, €, X)) = {(qy, ZXy)}. Get P started.

of P and any stack symbol X, including X,.

. 0(e, €, X) = {(e, €)} for any X.

29

Proof: N(P) -> L(P") Intuition

0 P” simulates P.

0 P” has a special bottom-marker to
catch the situation where P empties its

stack.
0 If so, P" accepts.

30

Proof: N(P) -> L(P")

0 P” has all the states, symbols, and
moves of P, plus:

1.

2.
3.

. 0(q, €, X,) = {(f, €)} for any state q of P.

Stack symbol X, (the start symbol), used
to guard the stack bottom.

New start state s and final state f.
o(s, €, Xp) = {(qg, ZX,)}. Get P started.

31

Deterministic PDA’s

[0 To be deterministic, there must be at
most one choice of move for any state
g, input symbol g, and stack symbol X.

0 In addition, there must not be a choice
between using input € or real input.

0 Formally, o(q, a, X) and d(q, €, X) cannot
both be nonempty.

32

Equivalence of PDA, CFG

Conversion of CFG to PDA
Conversion of PDA to CFG

33

Overview

0 When we talked about closure
properties of regular languages, it was
useful to be able to jump between RE
and DFA representations.

0 Similarly, CFG’s and PDA's are both
useful to deal with properties of the
CFL's.

34

Overview — (2)

0 Also, PDA’s, being “algorithmic,” are
often easier to use when arguing that a
language is a CFL.

[. It is easy to see how a PDA
can recognize balanced parentheses;
Not SO easy as a grammar.

35

Converting a CFG to a PDA

Let L = L(G).
Construct PDA P such that N(P) = L.
P has:

One state q.

Input symbols = terminals of G.
Stack symbols = all symbols of G.
Start symbol = start symbol of G.

36

Intuition About P

0 At each step, P represents some /eft-
sentential form (step of a leftmost
derivation).

0 If the stack of P is o, and P has so far
consumed x from its input, then P
represents left-sentential form Xo.

0 At empty stack, the input consumed is a
string in L(G).

37

Transition Function of P

1. 0(qg, a,a) =(q, €). (7ype 1 rules)
0 This step does not change the LSF

represented, but "moves” responsibility for a
from the stack to the consumed input.

2. If A-> ais a production of G, then
0(q, €, A) contains (q, o). (7ype 2 rules)

0 Guess a production for A, and represent the
next LSF in the derivation.

38

Proof That L(P) = L(G)

[0 We need to show that (g, wx, S) +* (q,
X, o) for any x if and only if S
=>*_ Wa.

0 Part 1: “only if” is an induction on the
number of steps made by P.

[0 Basis: 0 steps.
OThenoa =S, w=¢,and S =>*_ S is surely
true.

39

Induction for Part 1

0 Consider n moves of P: (g, wx, S) +*
(g, X, o) and assume the IH for
seguences of n-1 moves.

0 There are two cases, depending on
whether the last move uses a Type 1 or
Type 2 rule.

40

Use of a Rule

[0 The move sequence must be of the form
(9, yax, S) +* (q, ax, aa) + (q, X, @),
where ya = w.

[0 By the IH applied to the first n-1 steps,
S =>*|m yaOC.

OButya =w, soS =>*_ wa.

41

Use of a Rule

[0 The move sequence must be of the form
(a, wx, S) +*(q, X, AB) + (a, X, YB),
where A -> v is a production and a = y[.

[0 By the IH applied to the first n-1 steps,
S =>*_ WAR.
O0Thus, S =>*_ wyp = wa.

42

Proof of Part 2 ("if")

[0 We also must prove that if S =>*,_ wa,
then (g, wx, S) +* (g, X, o) for any X.

0 Induction on number of steps in the
leftmost derivation.

[0 Ideas are similar; omitted.

43

Proof — Completion

0 We now have (g, wx, S) +* (q, X, o) for
any x if and only if S =>*_ wa.

0 In particular, let x = a = €.

O0Then (g, w, S) +* (q, €, €) if and only if
S =>%_w.

0 That is, w is in N(P) if and only if w is in
L(G).

44

From a PDA to a CFG

Now, assume L = N(P).
We'll construct a CFG G such that L = L(G).

: G will have variables [pXq]
generating exactly the inputs that cause P to

have the net effect of popping stack symbol
X while going from state p to state q.

[0 P never gets below this X while doing so.

45

Stack
height

Picture: Popping X

46

Variables of G

[0 G’s variables are of the form [pXq].

[0 This variable generates all and only the
strings w such that

(P, W, X) F*(q, €, €).
[0 Also a start symbol S we’ll talk about
later.

47

Productions of G

00 Each production for [pXq] comes from a
move of P in state p with stack symbol X.

0 Simplest case: o(p, a, X) contains (g, €).
[0 Note g can be an input symbol or €.

[0 Then the production is [pXq] -> a.

[0 Here, [pXqg] generates g, because reading
a is one way to pop X and go from p to g.

48

Productions of G — (2)

0 Next simplest case: o(p, a, X) contains
(r, Y) for some state r and symbol Y.

0 G has production [pXq] -> a[rYq].

[0 We can erase X and go from p to g by
reading @ (entering state r and replacing
the X by Y) and then reading some w that
gets P from r to g while erasing the Y.

49

Picture of the Action

50

Productions of G — (3)

0 Third simplest case: o(p, a, X) contains

(r, YZ) for some state r and symbols Y
and Z.

[0 Now, P has replaced X by YZ.

[0 To have the net effect of erasing X, P
must erase Y, going from state r to
some state s, and then erase Z, going
from s to q.

o1

Picture of the Action

52

Third-Simplest Case — Concluded

[0 Since we do not know state s, we must
generate a family of productions:

[pXq] -> a[rYs][sZq]

for al
0 [pXq_

states s.
=>* auv whenever [rYs] =>* u

and [sZq] =>* w.

53

Productions of G: General Case

0 Suppose d(p, a, X) contains (r, Y,,...Y,)
for some state r and k > 3.

[0 Generate family of productions
[pXq] ->
a[rY;s,1[S:1Y5S,]...[Sk2Y-1Sk-1][Sk-1 Y]

54

Completion of the Construction

0 We can prove that (qy,, W, Zy)-*(p, €, €)

if and only if [qyZyP]

=>%* W,

0 Proof is two easy inductions.

[0 But state p can be a

0 Thus, add to G anot
start symbol, and ac

nything.

ner variable S, the
d productions

S -> [qyZyp] for eac

N state p.

55

