
1

Context-Free Grammars

Formalism

Derivations

Backus-Naur Form

Left- and Rightmost Derivations



2

Informal Comments

A context-free grammar is a notation 
for describing languages.

It is more powerful than finite automata 
or RE’s, but still cannot define all 
possible languages.

Useful for nested structures, e.g., 
parentheses in programming languages.



3

Informal Comments – (2)

Basic idea is to use “variables” to stand 
for sets of strings (i.e., languages).

These variables are defined recursively, 
in terms of one another.

Recursive rules (“productions”) involve 
only concatenation.

Alternative rules for a variable allow 
union.



4

Example: CFG for { 0n1n | n > 1} 

Productions:

S -> 01

S -> 0S1

Basis: 01 is in the language.

Induction: if w is in the language, then 
so is 0w1.



5

CFG Formalism

Terminals = symbols of the alphabet of 
the language being defined.

Variables = nonterminals = a finite 
set of other symbols, each of which 
represents a language.

Start symbol = the variable whose 
language is the one being defined.



6

Productions

A production has the form variable (head) 
-> string of variables and terminals (body).

Convention:

A, B, C,…  and also S are variables.

a, b, c,… are terminals.

…, X, Y, Z are either terminals or variables.

…, w, x, y, z are strings of terminals only.

, , ,… are strings of terminals and/or 
variables.



7

Example: Formal CFG

Here is a formal CFG for { 0n1n | n > 1}.

Terminals = {0, 1}.

Variables = {S}.

Start symbol = S.

Productions =

S -> 01

S -> 0S1



8

Derivations – Intuition

We derive strings in the language of a 
CFG by starting with the start symbol, 
and repeatedly replacing some variable 
A by the body of one of its productions.

That is, the “productions for A” are those 
that have head A.



9

Derivations – Formalism

We say A =>  if A ->  is a 
production.

Example: S -> 01; S -> 0S1.

S => 0S1 => 00S11 => 000111.



10

Iterated Derivation

=>* means “zero or more derivation 
steps.”

Basis:  =>*  for any string .

Induction: if  =>*  and  => , then 
 =>* .



11

Example: Iterated Derivation

S -> 01; S -> 0S1.

S => 0S1 => 00S11 => 000111.

Thus S =>* S; S =>* 0S1;                 
S =>* 00S11; S =>* 000111.



12

Sentential Forms

Any string of variables and/or terminals 
derived from the start symbol is called a 
sentential form.

Formally,  is a sentential form iff       S 
=>* .



13

Language of a Grammar

If G is a CFG, then L(G), the language 
of G, is {w | S =>* w}.

Example: G has productions S -> ε and 

S -> 0S1.

L(G) = {0n1n | n > 0}.



14

Context-Free Languages

A language that is defined by some CFG 
is called a context-free language.

There are CFL’s that are not regular 
languages, such as the example just 
given.

But not all languages are CFL’s.

Intuitively: CFL’s can count two things, 
not three.



15

BNF Notation

Grammars for programming languages 
are often written in BNF (Backus-Naur 
Form ).

Variables are words in <…>; Example: 
<statement>.

Terminals are often multicharacter 
strings indicated by boldface or 
underline; Example: while or WHILE.



16

BNF Notation – (2)

Symbol ::= is often used for ->.

Symbol | is used for “or.”

A shorthand for a list of productions with 
the same left side.

Example: S -> 0S1 | 01 is shorthand for 
S -> 0S1 and S -> 01.



17

BNF Notation – Kleene Closure

Symbol … is used for “one or more.”

Example: <digit> ::= 0|1|2|3|4|5|6|7|8|9 
<unsigned integer> ::= <digit>… 

Translation: Replace … with a new 
variable A and productions A -> A | .



18

Example: Kleene Closure

Grammar for unsigned integers can be 
replaced by:

U -> UD | D

D -> 0|1|2|3|4|5|6|7|8|9



19

BNF Notation: Optional Elements

Surround one or more symbols by […] 
to make them optional.

Example: <statement> ::= if
<condition> then <statement> [; else
<statement>]

Translation: replace [] by a new 
variable A with productions A ->  | ε.



20

Example: Optional Elements

Grammar for if-then-else can be 
replaced by:

S -> iCtSA

A -> ;eS | ε



21

BNF Notation – Grouping

Use {…} to surround a sequence of 
symbols that need to be treated as a 
unit.

Typically, they are followed by a … for “one 
or more.”

Example: <statement list> ::= 
<statement> [{;<statement>}…]



22

Translation: Grouping

Create a new variable A for {}.

One production for A: A -> .

Use A in place of {}.



23

Example: Grouping

L -> S [{;S}…]

Replace by L -> S [A…]      A -> ;S

A stands for {;S}.

Then by L -> SB   B -> A… | ε A -> ;S

B stands for [A…] (zero or more A’s).

Finally by L -> SB      B -> C | ε

C -> AC | A      A -> ;S

C stands for A… .



24

Leftmost and Rightmost 
Derivations

Derivations allow us to replace any of 
the variables in a string.

Leads to many different derivations of the 
same string.

By forcing the leftmost variable (or 
alternatively, the rightmost variable) to 
be replaced, we avoid these 
“distinctions without a difference.”



25

Leftmost Derivations

Say wA =>lm w if w is a string of 
terminals only and A ->  is a 
production.

Also,  =>*lm  if  becomes  by a 
sequence of 0 or more =>lm steps.



26

Example: Leftmost Derivations

Balanced-parentheses grammmar:        
S -> SS | (S) | ()

S =>lm SS =>lm (S)S =>lm (())S =>lm

(())()

Thus, S =>*lm (())()

S => SS => S() => (S)() => (())() is a 
derivation, but not a leftmost derivation.



27

Rightmost Derivations

Say Aw =>rm w if w is a string of 
terminals only and A ->  is a 
production.

Also,  =>*rm  if  becomes  by a 
sequence of 0 or more =>rm steps.



28

Example: Rightmost Derivations

Balanced-parentheses grammmar:         
S -> SS | (S) | ()

S =>rm SS =>rm S() =>rm (S)() =>rm

(())()

Thus, S =>*rm (())()

S => SS => SSS => S()S => ()()S => 
()()() is neither a rightmost nor a 
leftmost derivation.



29

Parse Trees

Definitions

Relationship to Left- and 
Rightmost Derivations

Ambiguity in Grammars



30

Parse Trees

Parse trees are trees labeled by 
symbols of a particular CFG.

Leaves: labeled by a terminal or ε.

Interior nodes: labeled by a variable.

Children are labeled by the body of a 
production for the parent.

Root: must be labeled by the start 
symbol.



31

Example: Parse Tree

S -> SS | (S) | ()

S

SS

S )(

( )

( )



32

Yield of a Parse Tree

The concatenation of the labels of the 
leaves in left-to-right order

That is, in the order of a preorder 
traversal.

is called the yield of the parse tree.

Example: yield of             is (())() S

SS

S )(

( )

( )



33

Generalization of Parse Trees

We sometimes talk about trees that are 
not exactly parse trees, but only 
because the root is labeled by some 
variable A that is not the start symbol.

Call these parse trees with root A.



34

Parse Trees, Leftmost and 
Rightmost Derivations

Trees, leftmost, and rightmost derivations 
correspond.

We’ll prove:

1. If there is a parse tree with root labeled A 
and yield w, then A =>*lm w.

2. If A =>*lm w, then there is a parse tree with 
root A and yield w.



35

Proof – Part 1

Induction on the height (length of the 
longest path from the root) of the tree.

Basis: height 1.  Tree looks like

A -> a1…an must be a              
production.

Thus, A =>*lm a1…an.

A

a1 an. . .



36

Part 1 – Induction

Assume (1) for trees of height < h, and 
let this tree have height h:

By IH, Xi =>*lm wi.

Note: if Xi is a terminal, then                   
Xi = wi.

Thus, A =>lm X1…Xn =>*lm w1X2…Xn

=>*lm w1w2X3…Xn =>*lm … =>*lm

w1…wn.

A

X1 Xn. . .

w1 wn



37

Proof: Part 2

Given a leftmost derivation of a terminal 
string, we need to prove the existence 
of a parse tree.

The proof is an induction on the length 
of the derivation.



38

Part 2 – Basis

If A =>*lm a1…an by a one-step 
derivation, then there must be a parse 
tree A

a1 an. . .



39

Part 2 – Induction

Assume (2) for derivations of fewer 
than k > 1 steps, and let A =>*lm w be 
a k-step derivation.

First step is A =>lm X1…Xn.

Key point: w can be divided so the first 
portion is derived from X1, the next is 
derived from X2, and so on.

If Xi is a terminal, then wi = Xi.



40

Induction – (2)

That is, Xi =>*lm wi for all i such that Xi

is a variable.

And the derivation takes fewer than k 
steps.

By the IH, if Xi is a variable, then there 
is a parse tree with root Xi and yield wi.

Thus, there is a parse tree
A

X1 Xn. . .

w1 wn



41

Parse Trees and Rightmost 
Derivations

The ideas are essentially the mirror 
image of the proof for leftmost 
derivations.

Left to the imagination.



42

Parse Trees and Any 
Derivation

The proof that you can obtain a parse 
tree from a leftmost derivation doesn’t 
really depend on “leftmost.”

First step still has to be A => X1…Xn.

And w still can be divided so the first 
portion is derived from X1, the next is 
derived from X2, and so on.



43

Ambiguous Grammars

A CFG is ambiguous if there is a string 
in the language that is the yield of two 
or more parse trees.

Example: S -> SS | (S) | ()

Two parse trees for ()()() on next slide.



44

Example – Continued

S

SS

S S

( )

S

SS

SS

( )( )

( ) ( )

( )



45

Ambiguity, Left- and 
Rightmost Derivations

If there are two different parse trees, 
they must produce two different 
leftmost derivations by the construction 
given in the proof.

Conversely, two different leftmost 
derivations produce different parse 
trees by the other part of the proof.

Likewise for rightmost derivations.



46

Ambiguity, etc. – (2)

Thus, equivalent definitions of 
“ambiguous grammar’’ are:

1. There is a string in the language that has 
two different leftmost derivations.

2. There is a string in the language that has 
two different rightmost derivations.



47

Ambiguity is a Property of 
Grammars, not Languages

For the balanced-parentheses language, 
here is another CFG, which is 
unambiguous.

B -> (RB | ε

R -> ) | (RR

B, the start symbol,
derives balanced strings.

R generates certain strings
that have one more right
paren than left.



48

Example: Unambiguous Grammar

B -> (RB | ε      R -> ) | (RR

Construct a unique leftmost derivation for 
a given balanced string of parentheses by 
scanning the string from left to right.

If we need to expand B, then use B -> (RB if 
the next symbol is “(”; use ε if at the end.

If we need to expand R, use R -> ) if the next 
symbol is “)” and (RR if it is “(”.



49

The Parsing Process

Remaining Input:

(())()

Steps of leftmost 
derivation:

B

Next
symbol

B -> (RB | ε      R -> ) | (RR



50

The Parsing Process

Remaining Input:

())()

Steps of leftmost 
derivation:

B

(RB
Next
symbol

B -> (RB | ε      R -> ) | (RR



51

The Parsing Process

Remaining Input:

))()

Steps of leftmost 
derivation:

B

(RB

((RRB
Next
symbol

B -> (RB | ε      R -> ) | (RR



52

The Parsing Process

Remaining Input:

)()

Steps of leftmost 
derivation:

B

(RB

((RRB

(()RB

Next
symbol

B -> (RB | ε      R -> ) | (RR



53

The Parsing Process

Remaining Input:

()

Steps of leftmost 
derivation:

B

(RB

((RRB

(()RB

(())B

Next
symbol

B -> (RB | ε      R -> ) | (RR



54

The Parsing Process

Remaining Input:

)

Steps of leftmost 
derivation:

B (())(RB

(RB

((RRB

(()RB

(())B

Next
symbol

B -> (RB | ε      R -> ) | (RR



55

The Parsing Process

Remaining Input: Steps of leftmost 
derivation:

B (())(RB

(RB (())()B

((RRB

(()RB

(())B

Next
symbol

B -> (RB | ε      R -> ) | (RR



56

The Parsing Process

Remaining Input: Steps of leftmost 
derivation:

B (())(RB

(RB (())()B

((RRB (())()

(()RB

(())B

Next
symbol

B -> (RB | ε      R -> ) | (RR



57

LL(1) Grammars

As an aside, a grammar such B -> (RB | ε      

R -> ) | (RR, where you can always figure 
out the production to use in a leftmost 
derivation by scanning the given string 
left-to-right and looking only at the next 
one symbol is called LL(1).

“Leftmost derivation, left-to-right scan, one 
symbol of lookahead.”



58

LL(1) Grammars – (2)

Most programming languages have 
LL(1) grammars.

LL(1) grammars are never ambiguous.



59

Inherent Ambiguity

It would be nice if for every ambiguous 
grammar, there were some way to “fix” 
the ambiguity, as we did for the 
balanced-parentheses grammar.

Unfortunately, certain CFL’s are 
inherently ambiguous, meaning that 
every grammar for the language is 
ambiguous.



60

Example: Inherent Ambiguity

The language {0i1j2k | i = j or j = k} is 
inherently ambiguous.

Intuitively, at least some of the strings 
of the form 0n1n2n must be generated 
by two different parse trees, one based 
on checking the 0’s and 1’s, the other 
based on checking the 1’s and 2’s.



61

One Possible Ambiguous 
Grammar

S -> AB | CD

A -> 0A1 | 01

B -> 2B | 2

C -> 0C | 0

D -> 1D2 | 12

A generates equal 0’s and 1’s

B generates any number of 2’s

C generates any number of 0’s

D generates equal 1’s and 2’s

And there are two derivations of every string
with equal numbers of 0’s, 1’s, and 2’s.  E.g.:
S => AB => 01B =>012
S => CD => 0D => 012



62

Normal Forms for CFG’s

Eliminating Useless Variables

Removing Epsilon

Removing Unit Productions

Chomsky Normal Form



63

Variables That Derive Nothing

Consider: S -> AB, A -> aA | a, B -> AB

Although A derives all strings of a’s, B 
derives no terminal strings.

Why?  The only production for B leaves a B 
in the sentential form.

Thus, S derives nothing, and the 
language is empty.



64

Discovery  Algorithms

There is a family of algorithms that work 
inductively.

They start discovering some facts that 
are obvious (the basis).

They discover more facts from what they 
already have discovered (induction).

Eventually, nothing more can be 
discovered, and we are done.



65

Picture of Discovery

Start with
the basis

facts

Round 1:
Add facts
that follow
from the
basis

Round 2:
Add facts
that follow
from round 1
and the
basis

And so on …



66

Testing Whether a Variable 
Derives Some Terminal String

Basis: If there is a production A -> w, 
where w has no variables, then A 
derives a terminal string.

Induction: If there is a production       A 
-> , where  consists only of terminals 
and variables known to derive a 
terminal string, then A derives a 
terminal string. 



67

Testing – (2)

Eventually, we can find no more 
variables.

An easy induction on the order in which 
variables are discovered shows that 
each one truly derives a terminal string.

Conversely, any variable that derives a 
terminal string will be discovered by this 
algorithm.



68

Proof of Converse

The proof is an induction on the height 
of the least-height parse tree by which 
a variable A derives a terminal string.

Basis: Height = 1.  Tree looks like:

Then the basis of the algorithm

tells us that A will be discovered.

A

a1 an. . .



69

Induction for Converse

Assume IH for parse trees of height < 
h, and suppose A derives a terminal 
string via a parse tree of height h:

By IH, those Xi’s that are

variables are discovered.

Thus, A will also be discovered, because 
it has a right side of terminals and/or 
discovered variables.

A

X1 Xn. . .

w1 wn



70

Algorithm to Eliminate 
Variables That Derive Nothing

1. Discover all variables that derive 
terminal strings.

2. For all other variables, remove all 
productions in which they appear in 
either the head or body.



71

Example: Eliminate Variables

S -> AB | C, A -> aA | a, B -> bB, C -> c

Basis: A and C are discovered because 
of A -> a and C -> c.

Induction: S is discovered because of   
S -> C.

Nothing else can be discovered.

Result: S -> C, A -> aA | a, C -> c



72

Unreachable Symbols

Another way a terminal or variable 
deserves to be eliminated is if it cannot 
appear in any derivation from the start 
symbol.

Basis: We can reach S (the start symbol).

Induction: if we can reach A, and there is 
a production A -> , then we can reach all 
symbols of .



73

Unreachable Symbols – (2)

Easy inductions in both directions show 
that when we can discover no more 
symbols, then we have all and only the 
symbols that appear in derivations from S.

Algorithm: Remove from the grammar all 
symbols not discovered reachable from S 
and all productions that involve these 
symbols. 



74

Eliminating Useless Symbols

A symbol is useful if it appears in 
some derivation of some terminal 
string from the start symbol.

Otherwise, it is useless.
Eliminate all useless symbols by:

1. Eliminate symbols that derive no terminal 
string.

2. Eliminate unreachable symbols.



75

Example: Useless Symbols – (2)

S -> AB, A -> C, C -> c, B -> bB

If we eliminated unreachable symbols 
first, we would find everything is 
reachable.

A, C, and c would never get eliminated.



76

Why It Works

After step (1), every symbol remaining 
derives some terminal string.

After step (2) the only symbols 
remaining are all derivable from S.

In addition, they still derive a terminal 
string, because such a derivation can 
only involve symbols reachable from S.



77

Epsilon Productions

We can almost avoid using productions of 
the form A -> ε (called ε-productions ).

The problem is that ε cannot be in the 
language of any grammar that has no ε–

productions.

Theorem: If L is a CFL, then L-{ε} has a 
CFG with no ε-productions.



78

Nullable Symbols

To eliminate ε-productions, we first 

need to discover the nullable symbols
= variables A such that A =>* ε.

Basis: If there is a production A -> ε, 

then A is nullable.

Induction: If there is a production       A 
-> , and all symbols of  are nullable, 
then A is nullable.



79

Example: Nullable Symbols

S -> AB, A -> aA | ε, B -> bB | A

Basis: A is nullable because of A -> ε.

Induction: B is nullable because of      B 
-> A.

Then, S is nullable because of S -> AB.



80

Eliminating ε-Productions

Key idea: turn each production            
A -> X1…Xn into a family of productions.

For each subset of nullable X’s, there is 
one production with those eliminated 
from the right side “in advance.”

Except, if all X’s are nullable (or the body 
was empty to begin with), do not make a 
production with ε as the right side.



81

Example: Eliminating ε-

Productions
S -> ABC, A -> aA | ε, B -> bB | ε, C -> ε

A, B, C, and S are all nullable.

New grammar:

S -> ABC | AB | AC | BC | A | B | C

A -> aA | a

B -> bB | b
Note: C is now useless.
Eliminate its productions.



82

Why it Works

Prove that for all variables A:
1. If w  ε and A =>*old w, then A =>*new w.

2. If A =>*new w then w  ε and A =>*old w.

Then, letting A be the start symbol 
proves that L(new) = L(old) – {ε}.

(1) is an induction on the number of 
steps by which A derives w in the old 
grammar.



83

Proof of 1 – Basis

If the old derivation is one step, then   
A -> w must be a production.

Since w  ε, this production also 

appears in the new grammar.

Thus, A =>new w.



84

Proof of 1 – Induction

Let A =>*old w be a k-step derivation, 
and assume the IH for derivations of 
fewer than k steps.

Let the first step be A =>old X1…Xn.

Then w can be broken into w = w1…wn, 
where Xi =>*old wi, for all i, in fewer 
than k steps. 



85

Induction – Continued

By the IH, if wi  ε, then Xi =>*new wi.

Also, the new grammar has a 
production with A on the left, and just 
those Xi’s on the right such that wi  ε.

Note: they all can’t be ε, because w  ε.

Follow a use of this production by the 
derivations Xi =>*new wi to show that A 
derives w in the new grammar.



86

Unit Productions

A unit production is one whose body 
consists of exactly one variable.

These productions can be eliminated.

Key idea: If A =>* B by a series of unit 
productions, and B ->  is a non-unit-
production, then add production A -> .

Then, drop all unit productions.



87

Unit Productions – (2)

Find all pairs (A, B) such that A =>* B 
by a sequence of unit productions only.

Basis: Surely (A, A).

Induction: If we have found (A, B), and 
B -> C is a unit production, then add 
(A, C).



88

Proof That We Find Exactly 
the Right Pairs

By induction on the order in which pairs 
(A, B) are found, we can show A =>* B 
by unit productions.

Conversely, by induction on the number 
of steps in the derivation by unit 
productions of A =>* B, we can show 
that the pair (A, B) is discovered.



89

Proof The the Unit-Production-
Elimination Algorithm Works

Basic idea: there is a leftmost derivation 
A =>*lm w in the new grammar if and 
only if there is such a derivation in the 
old.

A sequence of unit productions and a 
non-unit production is collapsed into a 
single production of the new grammar.



90

Cleaning Up a Grammar

Theorem: if L is a CFL, then there is a 
CFG for L – {ε} that has:

1. No useless symbols.

2. No ε-productions.

3. No unit productions.

I.e., every body is either a single 
terminal or has length > 2.



91

Cleaning Up – (2)

Proof: Start with a CFG for L.

Perform the following steps in order:
1. Eliminate ε-productions.

2. Eliminate unit productions.

3. Eliminate variables that derive no 
terminal string.

4. Eliminate variables not reached from the 
start symbol. Must be first.  Can create

unit productions or useless
variables.



92

Chomsky Normal Form

A CFG is said to be in Chomsky 
Normal Form if every production is of 
one of these two forms:

1. A -> BC (body is two variables).

2. A -> a (body is a single terminal).

Theorem: If L is a CFL, then L – {ε} 

has a CFG in CNF.



93

Proof of CNF Theorem

Step 1: “Clean” the grammar, so every 
body is either a single terminal or of 
length at least 2.

Step 2: For each body  a single terminal, 
make the right side all variables.

For each terminal a create new variable Aa

and production Aa -> a.

Replace a by Aa in bodies of length > 2.



94

Example: Step 2

Consider production A -> BcDe.

We need variables Ac and Ae. with 
productions Ac -> c and Ae -> e.

Note: you create at most one variable for 
each terminal, and use it everywhere it is 
needed.

Replace A -> BcDe by A -> BAcDAe.



95

CNF Proof – Continued

Step 3: Break right sides longer than 2 
into a chain of productions with right 
sides of two variables.

Example: A -> BCDE is replaced by     A 
-> BF, F -> CG, and G -> DE.

F and G must be used nowhere else.



96

Example of Step 3 – Continued

Recall A -> BCDE is replaced by          A 
-> BF, F -> CG, and G -> DE.

In the new grammar, A => BF => BCG 
=> BCDE.

More importantly: Once we choose to 
replace A by BF, we must continue to 
BCG and BCDE.

Because F and G have only one production.


