Decision Properties of Regular Languages

General Discussion of "Properties"

The Pumping Lemma

Membership, Emptiness, Etc.

Properties of Language Classes

- A language class is a set of languages.
 - Example: the regular languages.
- Language classes have two important kinds of properties:
 - 1. Decision properties.
 - 2. Closure properties.

Closure Properties

- □ A *closure property* of a language class says that given languages in the class, an operation (e.g., union) produces another language in the same class.
- Example: the regular languages are obviously closed under union, concatenation, and (Kleene) closure.
 - Use the RE representation of languages.

Representation of Languages

- □ Representations can be formal or informal.
- Example (formal): represent a language by a RE or FA defining it.
- Example: (informal): a logical or prose statement about its strings:
 - \square {0ⁿ1ⁿ | n is a nonnegative integer}
 - □ "The set of strings consisting of some number of 0's followed by the same number of 1's."

Decision Properties

- □ A decision property for a class of languages is an algorithm that takes a formal description of a language (e.g., a DFA) and tells whether or not some property holds.
- □ Example: Is language L empty?

Why Decision Properties?

- Think about DFA's representing protocols.
- Example: "Does the protocol terminate?"
 = "Is the language finite?"
- Example: "Can the protocol fail?" = "Is the language nonempty?"
 - Make the final state be the "error" state.

Why Decision Properties – (2)

- We might want a "smallest" representation for a language, e.g., a minimum-state DFA or a shortest RE.
- ☐ If you can't decide "Are these two languages the same?"
 - □ I.e., do two DFA's define the same language?

You can't find a "smallest."

The Membership Problem

- Our first decision property for regular languages is the question: "is string w in regular language L?"
- Assume L is represented by a DFA A.
- Simulate the action of A on the sequence of input symbols forming w.

What if We Have the Wrong Representation?

There is a circle of conversions from one form to another:

The Emptiness Problem

- ☐ Given a regular language, does the language contain any string at all?
- Assume representation is DFA.
- □ Compute the set of states reachable from the start state.
- If at least one final state is reachable, then yes, else no.

The Infiniteness Problem

- Is a given regular language infinite?
- Start with a DFA for the language.
- □ Key idea: if the DFA has n states, and the language contains any string of length n or more, then the language is infinite.
- Otherwise, the language is surely finite.
 - ☐ Limited to strings of length *n* or less.

Proof of Key Idea

- ☐ If an n-state DFA accepts a string w of length *n* or more, then there must be a state that appears twice on the path labeled w from the start state to a final state.
- □ Because there are at least n+1 states along the path.

Proof - (2)

$$w = xyz$$

Then xy^iz is in the language for all $i \ge 0$.

Since y is not ϵ , we see an infinite number of strings in L.

Infiniteness – Continued

- We do not yet have an algorithm.
- □ There are an infinite number of strings of length > n, and we can't test them all.
- Second key idea: if there is a string of length ≥ n (= number of states) in L, then there is a string of length between n and 2n-1.

Proof of 2nd Key Idea

□ Remember:

- y is the first cycle on the path.
- \square So $|xy| \le n$; in particular, $1 \le |y| \le n$.
- □ Thus, if w is of length 2n or more, there is a shorter string in L that is still of length at least n.
- □ Keep shortening to reach [n, 2n-1].

Completion of Infiniteness Algorithm

- □ Test for membership all strings of length between n and 2n-1.
 - ☐ If any are accepted, then infinite, else finite.
- □ A terrible algorithm.
- Better: find cycles between the start state and a final state.

Finding Cycles

- Eliminate states not reachable from the start state.
- 2. Eliminate states that do not reach a final state.
- 3. Test if the remaining transition graph has any cycles.

Finding Cycles – (2)

- But a simple, less efficient way to find cycles is to search forward from a given node N.
- If you can reach N, then there is a cycle.
- Do this starting at each node.

The Pumping Lemma

- We have, almost accidentally, proved a statement that is quite useful for showing certain languages are not regular.
- ☐ Called the *pumping lemma for regular languages*.

Statement of the Pumping Lemma

For every regular language L

There is an integer n, such that

Number of states of DFA for L

For every string w in L of length \geq n We can write w = xyz such that:

- 1. $|xy| \leq n$.
- 2. |y| > 0.
- 3. For all $i \ge 0$, xy^iz is in L.

Labels along first cycle on path labeled w

Example: Use of Pumping Lemma

- We have claimed {0^k1^k | k ≥ 1} is not a regular language.
- ☐ Suppose it were. Then there would be an associated n for the pumping lemma.
- □ Let $w = 0^n 1^n$. We can write w = xyz, where x and y consist of 0's, and $y \neq \epsilon$.
- □ But then xyyz would be in L, and this string has more 0's than 1's.

Decision Property: Equivalence

- □ Given regular languages L and M, is L = M?
- □ Algorithm involves constructing the *product DFA* from DFA's for L and M.
- Let these DFA's have sets of states Q and R, respectively.
- □ Product DFA has set of states Q × R.□ I.e., pairs [q, r] with q in Q, r in R.

Product DFA – Continued

- □ Start state = $[q_0, r_0]$ (the start states of the DFA's for L, M).
- □ Transitions: $\delta([q,r], a) = [\delta_L(q,a), \delta_M(r,a)]$
 - \square δ_L , δ_M are the transition functions for the DFA's of L, M.
 - ☐ That is, we simulate the two DFA's in the two state components of the product DFA.

Example: Product DFA

Equivalence Algorithm

- Make the final states of the product DFA be those states [q, r] such that exactly one of q and r is a final state of its own DFA.
- Thus, the product accepts w iff w is in exactly one of L and M.
- L = M if and only if the product automaton's language is empty.

Example: Equivalence

Decision Property: Containment

- Algorithm also uses the product automaton.
- □ How do you define the final states [q, r] of the product so its language is empty iff L

 M?

Answer: q is final; r is not.

Example: Containment

Note: the only final state is unreachable, so containment holds.

The Minimum-State DFA for a Regular Language

- □ In principle, since we can test for equivalence of DFA's we can, given a DFA A find the DFA with the fewest states accepting L(A).
- ☐ Test all smaller DFA's for equivalence with *A*.
- But that's a terrible algorithm.

Efficient State Minimization

- Construct a table with all pairs of states.
- ☐ If you find a string that *distinguishes* two states (takes exactly one to an accepting state), mark that pair.
- Algorithm is a recursion on the length of the shortest distinguishing string.

State Minimization – (2)

- Basis: Mark pairs with exactly one final state.
- □ Induction: mark [q, r] if for some input symbol a, [δ(q,a), δ(r,a)] is marked.
- After no more marks are possible, the unmarked pairs are equivalent and can be merged into one state.

Transitivity of "Indistinguishable"

- If state p is indistinguishable from q, and q is indistinguishable from r, then p is indistinguishable from r.
- Proof: The outcome (accept or don't) of p and q on input w is the same, and the outcome of q and r on w is the same, then likewise the outcome of p and r.

Constructing the Minimum-State DFA

- \square Suppose $q_1,...,q_k$ are indistinguishable states.
- □ Replace them by one *representative* state q.
- □ Then $\delta(q_1, a),..., \delta(q_k, a)$ are all indistinguishable states.
 - □ Key point: otherwise, we should have marked at least one more pair.
- Let $\delta(q, a)$ = the representative state for that group.

Example: State Minimization

	r	<u>b</u>	rb	_
{5} {2,4,6,8} {1,3,5,7}	{2,4,6,8} {2,4,6,8}	{5} {1,3,5,7} {1,3,7,9} {1,3,5,7,9} {1,3,5,7,9} {5}	→ ABCBDECDFDGFDCC	Here it is with more convenient state names
* {1,3,5,7,9}	{2,4,6,8}	{1,3,5,7,9}	*GDG	

Remember this DFA? It was constructed for the chessboard NFA by the subset construction.

		r	b
→	Α	В	С
	В	D	Ε
	C	D	F
	D	D	G
	Ε	D	G
*	F	D	C
*	G	D	G

Start with marks for the pairs with one of the final states F or G. 42

	r	b
$\rightarrow \overline{A}$	В	C
В	D	Ε
C	D	F
D	D	G
Ε	D	G
* F	D	C
*G	D	G

Input r gives no help, because the pair [B, D] is not marked.

	r	b
→ 7	A B	С
E	D	E
(F
) D	G
E		G
* F	D	C
*(G D	G

```
G F E D C B
A X X X X X X
B X X X X X X
C X X
D X X
E X X
F X
```

But input b distinguishes {A,B,F} from {C,D,E,G}. For example, [A, C] gets marked because [C, F] is marked.

		r	b
	Α	В	С
	В	D	Ε
	C	D	F
	D	D	G
	Ε	D	G
*	F	D	C
*	G	D	G

[C, D] and [C, E] are marked because of transitions on b to marked pair [F, G].

[A, B] is marked because of transitions on r to marked pair [B, D].

[D, E] can never be marked, because on both inputs they go to the same state.

Example – Concluded

Replace D and E by H. Result is the minimum-state DFA.

Eliminating Unreachable States

- Unfortunately, combining indistinguishable states could leave us with unreachable states in the "minimum-state" DFA.
- Thus, before or after, remove states that are not reachable from the start state.

Clincher

- We have combined states of the given DFA wherever possible.
- □ Could there be another, completely unrelated DFA with fewer states?
- No. The proof involves minimizing the DFA we derived with the hypothetical better DFA.

Proof: No Unrelated, Smaller DFA

- Let A be our minimized DFA; let B be a smaller equivalent.
- Consider an automaton with the states of A and B combined.
- Use "distinguishable" in its contrapositive form:
 - \square If states q and p are indistinguishable, so are $\delta(q, a)$ and $\delta(p, a)$.

Inferring Indistinguishability

Inductive Hypothesis

- ☐ Every state q of A is indistinguishable from some state of B.
- □ Induction is on the length of the shortest string taking you from the start state of A to q.

Proof - (2)

- Basis: Start states of A and B are indistinguishable, because L(A) = L(B).
- □ Induction: Suppose w = xa is a shortest string getting A to state q.
- □ By the IH, x gets A to some state r that is indistinguishable from some state p of B.
- □ Then $\delta_A(r, a) = q$ is indistinguishable from $\delta_B(p, a)$.

Proof - (3)

- □ However, two states of A cannot be indistinguishable from the same state of B, or they would be indistinguishable from each other.
 - Violates transitivity of "indistinguishable."
- Thus, B has at least as many states as A.

Closure Properties of Regular Languages

Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism

Closure Under Union

- ☐ If L and M are regular languages, so is L ∪ M.
- Proof: Let L and M be the languages of regular expressions R and S, respectively.
- □ Then R+S is a regular expression whose language is L ∪ M.

Closure Under Concatenation and Kleene Closure

□ Same idea:

- □ RS is a regular expression whose language is LM.
- □ R* is a regular expression whose language is L*.

Closure Under Intersection

- □ If L and M are regular languages, then so is L ∩ M.
- Proof: Let A and B be DFA's whose languages are L and M, respectively.
- Construct C, the product automaton of A and B.
- Make the final states of C be the pairs consisting of final states of both A and B.

Example: Product DFA for Intersection

Example: Use of Closure Property

- □ We proved $L_1 = \{0^n1^n \mid n \ge 0\}$ is not a regular language.
- \Box L₂ = the set of strings with an equal number of 0's and 1's isn't either, but that fact is trickier to prove.
- □ Regular languages are closed under ∩.
- ☐ If L_2 were regular, then $L_2 \cap L(\mathbf{0}^*\mathbf{1}^*) = L_1$ would be, but it isn't.

Closure Under Difference

- □ If L and M are regular languages, then so is L M = strings in L but not M.
- Proof: Let A and B be DFA's whose languages are L and M, respectively.
- Construct C, the product automaton of A and B.
- ☐ Final states of C are the pairs whose A-state is final but whose B-state is not.

Example: Product DFA for Difference

Closure Under Complementation

- □ The *complement* of a language L (with respect to an alphabet Σ such that Σ^* contains L) is Σ^* L.
- Since Σ* is surely regular, the complement of a regular language is always regular.

Closure Under Reversal

- □ Recall example of a DFA that accepted the binary strings that, as integers were divisible by 23.
- We said that the language of binary strings whose reversal was divisible by 23 was also regular, but the DFA construction was tricky.
- ☐ Here's the "tricky" construction.

Closure Under Reversal – (2)

- ☐ Given language L, L^R is the set of strings whose reversal is in L.
- □ Example: $L = \{0, 01, 100\}$; $L^R = \{0, 10, 001\}$.
- □ Proof: Let E be a regular expression for L. We show how to reverse E, to provide a regular expression E^R for L^R.

Reversal of a Regular Expression

- □ Basis: If E is a symbol a, ϵ , or \emptyset , then $E^R = E$.
- Induction: If E is
 - \square F+G, then $E^R = F^R + G^R$.
 - \square FG, then $E^R = G^R F^R$
 - \square F*, then E^R = (F^R)*.

Example: Reversal of a RE

```
Let E = \mathbf{01}^* + \mathbf{10}^*.

E^R = (\mathbf{01}^* + \mathbf{10}^*)^R = (\mathbf{01}^*)^R + (\mathbf{10}^*)^R
= (\mathbf{1}^*)^R \mathbf{0}^R + (\mathbf{0}^*)^R \mathbf{1}^R
= (\mathbf{1}^R)^* \mathbf{0} + (\mathbf{0}^R)^* \mathbf{1}
= \mathbf{1}^* \mathbf{0} + \mathbf{0}^* \mathbf{1}
```

Homomorphisms

- A homomorphism on an alphabet is a function that gives a string for each symbol in that alphabet.
- \square Example: h(0) = ab; $h(1) = \epsilon$.
- □ Extend to strings by $h(a_1...a_n) = h(a_1)...h(a_n)$.
- \square Example: h(01010) = ababab.

Closure Under Homomorphism

- If L is a regular language, and h is a homomorphism on its alphabet, then h(L) = {h(w) | w is in L} is also a regular language.
- Proof: Let E be a regular expression for L.
- Apply h to each symbol in E.
- Language of resulting RE is h(L).

Example: Closure under Homomorphism

- \square Let h(0) = ab; h(1) = ϵ .
- □ Let L be the language of regular expression 01* + 10*.
- □ Then h(L) is the language of regular expression $\mathbf{ab} \in \mathbf{ab} + \epsilon (\mathbf{ab})^*$.

Note: use parentheses to enforce the proper grouping.

- \square **ab** \in * + \in (**ab**)* can be simplified.
- $\square \in * = \varepsilon$, so $\mathbf{ab} \in * = \mathbf{ab} \in .$
- \square \in is the identity under concatenation.
 - \square That is, $\epsilon E = E \epsilon = E$ for any RE E.
- □ Thus, $ab \in + \epsilon(ab)^* = ab + (ab)^*$.
- □ Finally, L(ab) is contained in L((ab)*), so a RE for h(L) is (ab)*.

Inverse Homomorphisms

Let h be a homomorphism and L a language whose alphabet is the output language of h.

 $\Box h^{-1}(L) = \{w \mid h(w) \text{ is in } L\}.$

Example: Inverse Homomorphism

- \square Let h(0) = ab; h(1) = ϵ .
- \square Let L = {abab, baba}.
- □ $h^{-1}(L)$ = the language with two 0's and any number of 1's = L(1*01*01*).

Closure Proof for Inverse Homomorphism

- Start with a DFA A for L.
- □ Construct a DFA B for h⁻¹(L) with:
 - ☐ The same set of states.
 - ☐ The same start state.
 - ☐ The same final states.
 - □ Input alphabet = the symbols to which homomorphism h applies.

Proof - (2)

- □ The transitions for B are computed by applying h to an input symbol a and seeing where A would go on sequence of input symbols h(a).
- \square Formally, $\delta_B(q, a) = \delta_A(q, h(a))$.

Example: Inverse Homomorphism Construction

Proof – Inverse Homomorphism

- □ An induction on |w| (omitted) shows that $\delta_B(q_0, w) = \delta_A(q_0, h(w))$.
- □ Thus, B accepts w if and only if A accepts h(w).