
1

Decision Properties of Regular
Languages

General Discussion of “Properties”

The Pumping Lemma

Membership, Emptiness, Etc.

2

Properties of Language Classes

A language class is a set of
languages.

Example: the regular languages.

Language classes have two important
kinds of properties:

1. Decision properties.

2. Closure properties.

3

Closure Properties

A closure property of a language class
says that given languages in the class,
an operation (e.g., union) produces
another language in the same class.

Example: the regular languages are
obviously closed under union,
concatenation, and (Kleene) closure.

Use the RE representation of languages.

4

Representation of Languages

Representations can be formal or informal.

Example (formal): represent a language by a
RE or FA defining it.

Example: (informal): a logical or prose
statement about its strings:

{0n1n | n is a nonnegative integer}

“The set of strings consisting of some number of
0’s followed by the same number of 1’s.”

5

Decision Properties

A decision property for a class of
languages is an algorithm that takes a
formal description of a language (e.g., a
DFA) and tells whether or not some
property holds.

Example: Is language L empty?

6

Why Decision Properties?

Think about DFA’s representing
protocols.

Example: “Does the protocol terminate?”
= “Is the language finite?”

Example: “Can the protocol fail?” = “Is
the language nonempty?”

Make the final state be the “error” state.

7

Why Decision Properties – (2)

We might want a “smallest”
representation for a language, e.g., a
minimum-state DFA or a shortest RE.

If you can’t decide “Are these two
languages the same?”

I.e., do two DFA’s define the same
language?

You can’t find a “smallest.”

8

The Membership Problem

Our first decision property for regular
languages is the question: “is string w
in regular language L?”

Assume L is represented by a DFA A.

Simulate the action of A on the
sequence of input symbols forming w.

9

Example: Testing Membership

Start

1

0

A CB
1

0 0,1

0 1 0 1 1

Next
symbol

Current
state

10

Example: Testing Membership

Start

1

0

A CB
1

0 0,1

0 1 0 1 1

Next
symbol

Current
state

11

Example: Testing Membership

Start

1

0

A CB
1

0 0,1

0 1 0 1 1

Next
symbol

Current
state

12

Example: Testing Membership

Start

1

0

A CB
1

0 0,1

0 1 0 1 1

Next
symbol

Current
state

13

Example: Testing Membership

Start

1

0

A CB
1

0 0,1

0 1 0 1 1

Next
symbol

Current
state

14

Example: Testing Membership

Start

1

0

A CB
1

0 0,1

0 1 0 1 1

Next
symbol

Current
state

15

What if We Have the Wrong
Representation?

There is a circle of conversions from
one form to another:

RE

DFA

NFA

ε-NFA

16

The Emptiness Problem

Given a regular language, does the
language contain any string at all?

Assume representation is DFA.

Compute the set of states reachable
from the start state.

If at least one final state is reachable,
then yes, else no.

17

The Infiniteness Problem

Is a given regular language infinite?

Start with a DFA for the language.

Key idea: if the DFA has n states, and
the language contains any string of
length n or more, then the language is
infinite.

Otherwise, the language is surely finite.

Limited to strings of length n or less.

18

Proof of Key Idea

If an n-state DFA accepts a string w of
length n or more, then there must be a
state that appears twice on the path
labeled w from the start state to a final
state.

Because there are at least n+1 states
along the path.

19

Proof – (2)

w = xyz

q
x

y

z

Then xyiz is in the language for all i > 0.

Since y is not ε, we see an infinite

number of strings in L.

20

Infiniteness – Continued

We do not yet have an algorithm.

There are an infinite number of strings
of length > n, and we can’t test them
all.

Second key idea: if there is a string of
length > n (= number of states) in L,
then there is a string of length between
n and 2n-1.

21

Proof of 2nd Key Idea

Remember:

y is the first cycle on the path.

So |xy| < n; in particular, 1 < |y| < n.

Thus, if w is of length 2n or more, there
is a shorter string in L that is still of
length at least n.

Keep shortening to reach [n, 2n-1].

x
y

z

22

Completion of Infiniteness
Algorithm

Test for membership all strings of length
between n and 2n-1.

If any are accepted, then infinite, else finite.

A terrible algorithm.

Better: find cycles between the start
state and a final state.

23

Finding Cycles

1. Eliminate states not reachable from
the start state.

2. Eliminate states that do not reach a
final state.

3. Test if the remaining transition graph
has any cycles.

24

Finding Cycles – (2)

But a simple, less efficient way to find
cycles is to search forward from a given
node N.

If you can reach N, then there is a
cycle.

Do this starting at each node.

25

The Pumping Lemma

We have, almost accidentally, proved a
statement that is quite useful for showing
certain languages are not regular.

Called the pumping lemma for regular
languages.

26

Statement of the Pumping Lemma

For every regular language L

There is an integer n, such that

For every string w in L of length > n

We can write w = xyz such that:

1. |xy| < n.

2. |y| > 0.

3. For all i > 0, xyiz is in L.

Number of
states of
DFA for L

Labels along
first cycle on
path labeled w

27

Example: Use of Pumping Lemma

We have claimed {0k1k | k > 1} is not a
regular language.

Suppose it were. Then there would be
an associated n for the pumping lemma.

Let w = 0n1n. We can write w = xyz,
where x and y consist of 0’s, and y  ε.

But then xyyz would be in L, and this
string has more 0’s than 1’s.

28

Decision Property: Equivalence

Given regular languages L and M, is
L = M?

Algorithm involves constructing the
product DFA from DFA’s for L and M.

Let these DFA’s have sets of states Q
and R, respectively.

Product DFA has set of states Q  R.

I.e., pairs [q, r] with q in Q, r in R.

29

Product DFA – Continued

Start state = [q0, r0] (the start states of
the DFA’s for L, M).

Transitions: δ([q,r], a) =
[δL(q,a), δM(r,a)]

δL, δM are the transition functions for the

DFA’s of L, M.

That is, we simulate the two DFA’s in the
two state components of the product DFA.

30

Example: Product DFA

A

C

B

D

0

1

0, 1

1

1

0
0

[A,C] [A,D]
0

[B,C]

1

0

1

0

1

[B,D]

0

1

31

Equivalence Algorithm

Make the final states of the product DFA
be those states [q, r] such that exactly
one of q and r is a final state of its own
DFA.

Thus, the product accepts w iff w is in
exactly one of L and M.

L = M if and only if the product
automaton’s language is empty.

32

Example: Equivalence

A

C

B

D

0

1

0, 1

1

1

0
0

[A,C] [A,D]
0

[B,C]

1

0

1

0

1

[B,D]

0

1

33

Decision Property: Containment

Given regular languages L and M, is L
 M?

Algorithm also uses the product
automaton.

How do you define the final states [q, r]
of the product so its language is empty
iff L  M?

Answer: q is final; r is not.

34

Example: Containment

A

C

B

D

0

1

0, 1

1

1

0
0

[A,C] [A,D]
0

[B,C]

1

0

1

0

1

[B,D]

0

1

Note: the only final state
is unreachable, so
containment holds.

35

The Minimum-State DFA for a
Regular Language

In principle, since we can test for
equivalence of DFA’s we can, given a
DFA A find the DFA with the fewest
states accepting L(A).

Test all smaller DFA’s for equivalence
with A.

But that’s a terrible algorithm.

36

Efficient State Minimization

Construct a table with all pairs of
states.

If you find a string that distinguishes
two states (takes exactly one to an
accepting state), mark that pair.

Algorithm is a recursion on the length
of the shortest distinguishing string.

37

Love

Start

Love-15

15-Love
s

o

Love-30

15-all

30-Love

s

s

o

o

Love-40

15-30

30-15

40-Love

s

s

s

o

o

o

Server
Wins

Opp’nt
Wins

s

o

40-15

15-40

30-all

s

s

s

o

o

o

30-40

40-30

s

s

s

o

o

o

deuce
s

s

o

o
Ad-out

Ad-in

s

o
s

o

s

o

38

State Minimization – (2)

Basis: Mark pairs with exactly one final state.

Induction: mark [q, r] if for some input
symbol a, [δ(q,a), δ(r,a)] is marked.

After no more marks are possible, the
unmarked pairs are equivalent and can be
merged into one state.

39

Transitivity of “Indistinguishable”

If state p is indistinguishable from q,
and q is indistinguishable from r, then p
is indistinguishable from r.

Proof: The outcome (accept or don’t) of
p and q on input w is the same, and the
outcome of q and r on w is the same,
then likewise the outcome of p and r.

40

Constructing the Minimum-
State DFA

Suppose q1,…,qk are indistinguishable states.

Replace them by one representative state q.

Then δ(q1, a),…, δ(qk, a) are all

indistinguishable states.

Key point: otherwise, we should have marked at
least one more pair.

Let δ(q, a) = the representative state for that

group.

41

Example: State Minimization

r b

{1}

* {1,3,5,7,9} {2,4,6,8} {1,3,5,7,9}

* {1,3,7,9} {2,4,6,8} {5}

{2,4,6,8} {1,3,5,7,9}{2,4,6,8}

{2,4,6,8} {1,3,7,9}{5}

{2,4} {2,4,6,8} {1,3,5,7}

{1,3,5,7}

{2,4} {5}

{2,4,6,8} {1,3,5,7,9}

Remember this DFA? It was constructed for the
chessboard NFA by the subset construction.

r b
A B C
B D E
C D F
D D G
E D G
F D C
G D G

*

*

Here it is
with more
convenient
state names

42

Example – Continued

r b
A B C
B D E
C D F
D D G
E D G
F D C
G D G

*

*

G F E D C B
A
B
C
D
E
F

x

x

x

x

x

x

x

x

x

x

Start with marks for
the pairs with one of
the final states F or G.

43

Example – Continued

r b
A B C
B D E
C D F
D D G
E D G
F D C
G D G

*

*

G F E D C B
A
B
C
D
E
F

x

x

x

x

x

x

x

x

x

x

Input r gives no help,
because the pair [B, D]
is not marked.

44

Example – Continued

r b
A B C
B D E
C D F
D D G
E D G
F D C
G D G

*

*

G F E D C B
A
B
C
D
E
F

x

x

x

x

x

x

x

x

x

x

But input b distinguishes {A,B,F}
from {C,D,E,G}. For example, [A, C]
gets marked because [C, F] is marked.

x

x x

x

x

x x

45

Example – Continued

r b
A B C
B D E
C D F
D D G
E D G
F D C
G D G

*

*

G F E D C B
A
B
C
D
E
F

x

x

x

x

x

x

x

x

x

x

[C, D] and [C, E] are marked
because of transitions on b to
marked pair [F, G].

x

x x

x

x

x x

x x

46

Example – Continued

r b
A B C
B D E
C D F
D D G
E D G
F D C
G D G

*

*

G F E D C B
A
B
C
D
E
F

x

x

x

x

x

x

x

x

x

x

[A, B] is marked
because of transitions on r
to marked pair [B, D].

x

x x

x

x

x x

x x

x

[D, E] can never be marked,
because on both inputs they
go to the same state.

47

Example – Concluded

r b
A B C
B D E
C D F
D D G
E D G
F D C
G D G

*

*

G F E D C B
A
B
C
D
E
F

x

x

x

x

x

x

x

x

x

x

x

x x

x

x

x x

x x

x
r b

A B C
B H H
C H F
H H G

F H C
G H G

*

*

Replace D and E by H.
Result is the minimum-state DFA.

48

Eliminating Unreachable States

Unfortunately, combining
indistinguishable states could leave us
with unreachable states in the
“minimum-state” DFA.

Thus, before or after, remove states
that are not reachable from the start
state.

49

Clincher

We have combined states of the given
DFA wherever possible.

Could there be another, completely
unrelated DFA with fewer states?

No. The proof involves minimizing the
DFA we derived with the hypothetical
better DFA.

50

Proof: No Unrelated, Smaller DFA

Let A be our minimized DFA; let B be a
smaller equivalent.

Consider an automaton with the states of
A and B combined.

Use “distinguishable” in its contrapositive
form:

If states q and p are indistinguishable, so are
δ(q, a) and δ(p, a).

51

Inferring Indistinguishability

q0

p0

Start states
of A and B
indistinguishable
because L(A)
= L(B).

a
q

p
a

Must be
indistinguishable

b
r

s
b

Must be
indistinguishable

52

Inductive Hypothesis

Every state q of A is indistinguishable
from some state of B.

Induction is on the length of the
shortest string taking you from the start
state of A to q.

53

Proof – (2)

Basis: Start states of A and B are
indistinguishable, because L(A) = L(B).

Induction: Suppose w = xa is a shortest
string getting A to state q.

By the IH, x gets A to some state r that is
indistinguishable from some state p of B.

Then δA(r, a) = q is indistinguishable from
δB(p, a).

54

Proof – (3)

However, two states of A cannot be
indistinguishable from the same state of
B, or they would be indistinguishable
from each other.

Violates transitivity of “indistinguishable.”

Thus, B has at least as many states as
A.

55

Closure Properties of Regular
Languages

Union, Intersection, Difference,
Concatenation, Kleene Closure,

Reversal, Homomorphism, Inverse
Homomorphism

56

Closure Under Union

If L and M are regular languages, so is
L  M.

Proof: Let L and M be the languages of
regular expressions R and S,
respectively.

Then R+S is a regular expression whose
language is L  M.

57

Closure Under Concatenation
and Kleene Closure

Same idea:

RS is a regular expression whose language
is LM.

R* is a regular expression whose language
is L*.

58

Closure Under Intersection

If L and M are regular languages, then
so is L  M.

Proof: Let A and B be DFA’s whose
languages are L and M, respectively.

Construct C, the product automaton of A
and B.

Make the final states of C be the pairs
consisting of final states of both A and B.

59

Example: Product DFA for
Intersection

A

C

B

D

0

1

0, 1

1

1

0
0

[A,C] [A,D]
0

[B,C]

1

0

1

0

1

[B,D]

0

1

60

Example: Use of Closure Property

We proved L1 = {0n1n | n > 0} is not a
regular language.

L2 = the set of strings with an equal
number of 0’s and 1’s isn’t either, but
that fact is trickier to prove.

Regular languages are closed under .

If L2 were regular, then L2 L(0*1*) =
L1 would be, but it isn’t.

61

Closure Under Difference

If L and M are regular languages, then
so is L – M = strings in L but not M.

Proof: Let A and B be DFA’s whose
languages are L and M, respectively.

Construct C, the product automaton of A
and B.

Final states of C are the pairs whose A-
state is final but whose B-state is not.

62

Example: Product DFA for
Difference

A

C

B

D

0

1

0, 1

1

1

0
0

[A,C] [A,D]
0

[B,C]

1

0

1

0

1

[B,D]

0

1

63

Closure Under Complementation

The complement of a language L (with
respect to an alphabet Σ such that Σ*
contains L) is Σ* – L.

Since Σ* is surely regular, the

complement of a regular language is
always regular.

64

Closure Under Reversal

Recall example of a DFA that accepted
the binary strings that, as integers were
divisible by 23.

We said that the language of binary
strings whose reversal was divisible by
23 was also regular, but the DFA
construction was tricky.

Here’s the “tricky” construction.

65

Closure Under Reversal – (2)

Given language L, LR is the set of strings
whose reversal is in L.

Example: L = {0, 01, 100};
LR = {0, 10, 001}.

Proof: Let E be a regular expression for L.
We show how to reverse E, to provide a
regular expression ER for LR.

66

Reversal of a Regular Expression

Basis: If E is a symbol a, ε, or ∅, then

ER = E.

Induction: If E is

F+G, then ER = FR + GR.

FG, then ER = GRFR

F*, then ER = (FR)*.

67

Example: Reversal of a RE

Let E = 01* + 10*.

ER = (01* + 10*)R = (01*)R + (10*)R

= (1*)R0R + (0*)R1R

= (1R)*0 + (0R)*1

= 1*0 + 0*1.

68

Homomorphisms

A homomorphism on an alphabet is a
function that gives a string for each
symbol in that alphabet.

Example: h(0) = ab; h(1) = ε.

Extend to strings by h(a1…an) =
h(a1)…h(an).

Example: h(01010) = ababab.

69

Closure Under Homomorphism

If L is a regular language, and h is a
homomorphism on its alphabet, then h(L)
= {h(w) | w is in L} is also a regular
language.

Proof: Let E be a regular expression for L.

Apply h to each symbol in E.

Language of resulting RE is h(L).

70

Example: Closure under
Homomorphism

Let h(0) = ab; h(1) = ε.

Let L be the language of regular
expression 01* + 10*.

Then h(L) is the language of regular
expression abε* + ε(ab)*.

Note: use parentheses
to enforce the proper
grouping.

71

Example – Continued

abε* + ε(ab)* can be simplified.

ε* = ε, so abε* = abε.

ε is the identity under concatenation.

That is, εE = Eε = E for any RE E.

Thus, abε + ε(ab)* = ab + (ab)*.

Finally, L(ab) is contained in L((ab)*),
so a RE for h(L) is (ab)*.

72

Inverse Homomorphisms

Let h be a homomorphism and L a
language whose alphabet is the output
language of h.

h-1(L) = {w | h(w) is in L}.

73

Example: Inverse Homomorphism

Let h(0) = ab; h(1) = ε.

Let L = {abab, baba}.

h-1(L) = the language with two 0’s and
any number of 1’s = L(1*01*01*).

74

Closure Proof for Inverse
Homomorphism

Start with a DFA A for L.

Construct a DFA B for h-1(L) with:

The same set of states.

The same start state.

The same final states.

Input alphabet = the symbols to which
homomorphism h applies.

75

Proof – (2)

The transitions for B are computed by
applying h to an input symbol a and
seeing where A would go on sequence
of input symbols h(a).

Formally, δB(q, a) = δA(q, h(a)).

76

Example: Inverse Homomorphism
Construction

A

C

B

a

a

a

b b

b

C

B

A

h(0) = ab
h(1) = ε

1

1

1 Since
h(1) = ε

0

0

, 0

Since
h(0) = ab

77

Proof – Inverse Homomorphism

An induction on |w| (omitted) shows
that δB(q0, w) = δA(q0, h(w)).

Thus, B accepts w if and only if A
accepts h(w).

