Decision Properties of Regular
Languages

General Discussion of “Properties”
The Pumping Lemma
Membership, Emptiness, Etc.

Properties of Language Classes

0 A /anguage class is a set of
languages.

0 : the regular languages.
[0 Language classes have two important
kinds of properties:
1. Decision properties.
2. Closure properties.

Closure Properties

0 A closure property of a language class
says that given languages in the class,
an operation (e.g., union) produces
another language in the same class.

0 : the regular languages are
obviously closed under union,
concatenation, and (Kleene) closure.

[0 Use the RE representation of languages.

Representation of Languages

[0 Representations can be formal or informal.

0 (formal): represent a language by a
RE or FA defining it.
[: (informal): a logical or prose

statement about its strings:
0{0"1" | n is @ nonnegative integer}

[0"The set of strings consisting of some number of
0’s followed by the same number of 1's.”

Decision Properties

0 A decision property for a class of
languages is an algorithm that takes a
formal description of a language (e.g., a
DFA) and tells whether or not some
property holds.

0 . Is language L empty?

Why Decision Properties?

0 Think about DFA’s representing
protocols.

[: "Does the protocol terminate?”
= "Is the language finite?”
0 : "Can the protocol fail?” = "“Is

the language nonempty?”
[0 Make the final state be the “error” state.

Why Decision Properties — (2)

0 We might want a “smallest”
representation for a language, e.qg., a
minimum-state DFA or a shortest RE.

0 If you can’t decide “Are these two
languages the same?”
O1I.e., do two DFA's define the same
language?

You can’t find a “smallest.”

The Membership Problem

0 Our first decision property for regular
languages is the question: “is string w
in regular language L?”

[0 Assume L is represented by a DFA A.

[0 Simulate the action of A on the
sequence of input symbols forming w.

. Testing Membership

. Testing Membership

: state 10

Start

. Testing Membership

: state 1

. Testing Membership

: state 12

Start

. Testing Membership

0101 1
....... o
. Symbol ;
0 0,1

: state 13

Start

. Testing Membership

01011 f
....... o
. Symbol ;
0 0,1

: state 14

What if We Have the Wrong
Representation?

[0 There is a circle of conversions from
one form to another:

/N
e-NFA DFA

N

The Emptiness Problem

0 Given a regular language, does the
language contain any string at all?

[0 Assume representation is DFA.

0 Compute the set of states reachable
from the start state.

0 If at least one final state is reachable,
then yes, else no.

16

The Infiniteness Problem

Is a given regular language infinite?
Start with a DFA for the language.

: if the DFA has n states, and
the language contains any string of
length 7 or more, then the language is
infinite.

[0 Otherwise, the language is surely finite.
[0 Limited to strings of length n or less.

17

Proof of

0 If an n-state DFA accepts a string w of
length 7 or more, then there must be a
state that appears twice on the path
labeled w from the start state to a final
state.

[0 Because there are at least n+1 states
along the path.

18

Proof — (2)

Then xy'z is in the language for all i > 0.

Since y is not €, we see an infinite
number of strings in L.

19

Infiniteness — Continued

[0 We do not yet have an algorithm.

0 There are an infinite number of strings
of length > n, and we can’t test them
all.

0 . if there is a string of
length > n (= number of states) in L,
then there is a string of length between
n and 2n-1.

20

Proof of 2nd

Remember:) «x @ z .0
y is the first cycle on the path.
So |xy| < n; in particular, 1 < |y| < n.

Thus, if w is of length 2n or more, there
is a shorter string in L that is still of
length at least n.

[0 Keep shortening to reach [n, 2n-1].

21

Completion of Infiniteness
Algorithm

[0 Test for membership all strings of length
between n and 2n-1.

0 If any are accepted, then infinite, else finite.
[0 A terrible algorithm.,

[0 Better: find cycles between the start
state and a final state.

22

Finding Cycles

1. Eliminate states not reachable from
the start state.

2. Eliminate states that do not reach a
final state.

3. Test if the remaining transition graph
has any cycles.

23

Finding Cycles — (2)

0 But a simple, less efficient way to find
cycles is to search forward from a given
node N.

0 If you can reach N, then there is a
cycle.

[0 Do this starting at each node.

24

The Pumping Lemma

[0 We have, almost accidentally, proved a
statement that is quite useful for showing
certain languages are not regular.

0 Called the pumping lemma for regular
languages.

25

Statement of the Pumping Lemma

Number of
For every regular language L states of
o " Draforl

There is an integer n, such that
For every string w in L of length > n
We can write w = xyz such that:

1. |xy| <n.

Labels along
2. |yl > 0. first cycle on
3. Foralli> 0, xyizisinL. pathlabeledw

26

: Use of Pumping Lemma

[0 We have claimed {0k1k | k > 1} is not a
regular language.

0 Suppose it were. Then there would be
an associated n for the pumping lemma.

O0Letw = 0"1". We can write w = Xxyz,
where X and y consist of 0's, and y = €.

0 But then xyyz would be in L, and this
string has more 0’s than 1's.

27

Decision Property: Equivalence

0 Given regular languages L and M, is
L = M?

[0 Algorithm involves constructing the
product DFA from DFA's for L and M.

0 Let these DFA’s have sets of states Q
and R, respectively.

0 Product DFA has set of states Q x R.
OI.e. pairs[qg, r] withqin Q, rin R.

28

Product DFA — Continued

[0 Start state = [q,, r,] (the start states of
the DFA’s for L, M).

0 Transitions: o([¢

F], a) =

[SL(an)l 6M(rla):

09, oy are the transition functions for the

DFA's of L, M.

0 That is, we simulate the two DFA’s in the
two state components of the product DFA.

29

: Product DFA

30

Equivalence Algorithm

[0 Make the final states of the product DFA
be those states [q, r] such that exactly

one of g and r is a final state of its own
DFA.

0 Thus, the product accepts w iff w is in
exactly one of L and M.

OL = Mif and only if the product
automaton’s language is empty.

31

. Equivalence

32

Decision Property: Containment

0 Given regular languages L and M, is L
c M?

0 Algorithm also uses the product
automaton.

[0 How do you define the final states [q, r]
of the product so its language is empty
iff Lc M?

: g is final; r is not.

33

: Containment

Note: the only final state
iS unreachable, so
containment holds.

34

The Minimum-State DFA for a
Reqular Language

0 In principle, since we can test for
equivalence of DFA’'s we can, given a
DFA A find the DFA with the fewest

states accepting L(A).

[0 Test all smaller DFA’s for equivalence
with A.

[0 But that's a terrible algorithm.

35

Efficient State Minimization

0 Construct a table with all pairs of
states.

0 If you find a string that distinguishes
two states (takes exactly one to an
accepting state), mark that pair.

0 Algorithm is a recursion on the length
of the shortest distinguishing string.

36

37

State Minimization — (2)

[0 Basis: Mark pairs with exactly one final state.

0 Induction: mark [q, r] if for some input
symbol g, [0(q,a), o(r,a)] is marked.

00 After no more marks are possible, the
unmarked pairs are equivalent and can be
merged into one state.

38

Transitivity of “Indistinguishable”

0 If state p is indistinguishable from g,
and q is indistinguishable from r, then p
is indistinguishable from r.

0 Proof: The outcome (accept or don't) of
p and g on input w is the same, and the
outcome of g and r on w is the same,
then likewise the outcome of p and .

39

Constructing the Minimum-
State DFA

Suppose q4,...,q, are indistinguishable states.

Replace them by one representative state q.
Then d(q,, a),..., 0(q,, a) are all
indistinguishable states.

[: otherwise, we should have marked at
least one more pair.

0 Let o(qg, a) = the representative state for that
group.

40

: State Minimization

r b r |b
—{1 | 24 {5 — ABIC
{214} {2141618} {1131517} BID|E Here it is
{5} {2141618} {1131719} gg I(:; with more
{2141618} {2141618} {113151719} ED |G convenient
{1131517} {2141618} {1/3/5/7/9} state hames
* {1,379} {2468} {5) e
*{1,3,5,7,9} {2,4,6,8}/{1,3,5,7,9} ¥

Remember this DFA? It was constructed for the
chessboard NFA by the subset construction.

41

*x x

MM mMmUUO >

OO0 g OO m™

N0 Mmoo

— Continued

MmO O @ >

Start with marks for
the pairs with one of
the final states F or G.

42

*x x

OMmMmQO O ® >

OUO0ODgOO0Om-™

OO TmOoT

— Continued

MmO m™X>

Input r gives no help,
because the pair [B, D]
is not marked. 13

*x x

MM m@>

OUO0ODgOO0Om-™

N0 Mmoo

— Continued

MmO W@ >
X X X X X x@
X X X X X
X XM
< =< U
<X X 0)

But input b distinguishes {A,B,F}

from {C,D,E,G}. For example, [A, C]

gets marked because [C, F] is marked.
4

4

*x x

MM m@>

OUO0ODgOO0Om-™

N0 Mmoo

— Continued

MmO W@ >
X X X X x x@
X X X X X
X X XM
< x xU
X X)

[C, D] and [C, E] are marked
because of transitions on b to
marked pair [F, G].

45

— Continued

rib G FEDTU CB
— ABIC A X X X X X X
BIDI|E B X X X X X
CD|F c X X X X
DD|G D X X
ED|G E X X
x F|D |C F X
xGD|G
[A, B] is marked [D, E] can never be marked,

because of transitionsonr because on both inputs they

to marked pair [B, D]. go to the same state. .

— Concluded

47

o X

O X X
N X X X
LI X< X X -
T
L < X X X X)
Q
MX X X X X X m
<< OO WL .,_:
£ S
B E
w <
corTurweO 0O o £
c
. ;n T T L T L a|n_nb
<< OO I w O oA+
ﬁ ¥ ¥ %.B
8 5
oowre OO0 @%
N YaYalaNa¥ala o oc
SO NaNITRTING)
ﬁ X %

Eliminating Unreachable States

0 Unfortunately, combining
indistinguishable states could leave us
with unreachable states in the
“minimum-state” DFA.

0 Thus, before or after, remove states
that are not reachable from the start
state.

48

Clincher

[0 We have combined states of the given
DFA wherever possible.

[0 Could there be another, completely
unrelated DFA with fewer states?

[0No. The proof involves minimizing the
DFA we derived with the hypothetical
better DFA.

49

Proof: No Unrelated, Smaller DFA

0 Let A be our minimized DFA; let B be a
smaller equivalent.

[0 Consider an automaton with the states of
A and B combined.

[0 Use “distinguishable” in its contrapositive
form:

[0 If states g and p are indistinguishable, so are
o(q, a) and o(p, a).

50

Inferring Indistinguishability

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
o*
.

Start states
of A and B Must be - Must be ™

indistinguishable indistinguishable indistinguishable
because L(A)

= L(B).

o1

Inductive Hypothesis

0 Every state g of A is indistinguishable
from some state of B.

0 Induction is on the length of the
shortest string taking you from the start
state of A to q.

52

Proof — (2)

[0 Basis: Start states of A and B are
indistinguishable, because L(A) = L(B).

0 Induction: Suppose w = xa is a shortest
string getting A to state q.

[0 By the IH, x gets A to some state r that is
indistinguishable from some state p of B.
0 Then 0,(r, @) = q is indistinguishable from

6B(pl a)'

53

Proof — (3)

[0 However, two states of A cannot be
indistinguishable from the same state of
B, or they would be indistinguishable
from each other.

[0 Violates transitivity of “indistinguishable.”

0 Thus, B has at least as many states as
A.

54

Closure Properties of Regular
Languages
Union, Intersection, Difference,
Concatenation, Kleene Closure,

Reversal, Homomorphism, Inverse
Homomorphism

55

Closure Under Union

O0If L and M are regular languages, so is
L u M.

0 Proof: Let L and M be the languages of
regular expressions R and S,
respectively.

[0 Then R+S is a regular expression whose
language is L U M.

56

Closure Under Concatenation
and Kleene Closure

[0 Same idea:

[0RS is a regular expression whose language
is LM.

[0R* is a regular expression whose language
is L*.

S

Closure Under Intersection

O0If L and M are regular languages, then
soisL M.

0 Proof: Let A and B be DFA’s whose
languages are L and M, respectively.

[0 Construct C, the product automaton of A
and B.

[0 Make the final states of C be the pairs
consisting of final states of both A and B.

58

: Product DFA for
Intersection

59

. Use of Closure Property

0 We proved L; = {0"1" | n > 0} is not a
regular language.

0L, = the set of strings with an equal
number of 0’s and 1's isn’t either, but
that fact is trickier to prove.

[0 Regular languages are closed under .

0 If L, were regular, then L, nL(0*1%*) =
L, would be, but it isn't.

60

Closure Under Difference

O0If L and M are regular languages, then
so is L —M = strings in L but not M.

0 Proof: Let A and B be DFA’s whose
languages are L and M, respectively.

[0 Construct C, the product automaton of A
and B.

[0 Final states of C are the pairs whose A-
state is final but whose B-state is not.

61

: Product DFA for
Difference

62

Closure Under Complementation

0 The complement of a language L (with
respect to an alphabet 2 such that 2*

contains L) is 2* — L.

[0 Since 2* is surely regular, the

complement of a regular language is
always regular.

63

Closure Under Reversal

[0 Recall example of a DFA that accepted
the binary strings that, as integers were
divisible by 23.

0 We said that the language of binary
strings whose reversal was divisible by
23 was also regular, but the DFA
construction was tricky.

[0 Here's the “tricky” construction.

64

Closure Under Reversal — (2)

0 Given language L, LR is the set of strings
whose reversal is in L.

[: L =4{0, 01, 100};
LR = {0, 10, 001}.

[0 Proof: Let E be a regular expression for L.

We show how to reverse E, to provide a
regular expression ER for LR,

65

Reversal of a Regular Expression

0 Basis: If E is a symbol a, €, or ¢, then
ER = E.

O Induction: If E is

F+G, then ER = FR + GR,

FG, then ER = GRFR

F*, then ER = (FR)*,

66

: Reversal of a RE

Let E = 01* + 10*.

ER = (01* + 10*)R = (01*)R + (10*)R
= (1*)ROR + (0*)R1R

= (17)*0 + (0R)*1

= 1*0 + 0*1.

67

Homomorphisms

O0A homomorphism on an alphabet is a
function that gives a string for each
symbol in that alphabet.

0 : h(0) = ab; h(1) = €.

[0 Extend to strings by h(a,...a,) =
h(a,)...h(a,).

0 : h(01010) = ababab.

68

Closure Under Homomorphism

OIf L is a regular language, and h is a
homomorphism on its alphabet, then h(L)
= {h(w) | wis in L} is also a regular
language.

Proof: Let E be a regular expression for L.
Apply h to each symbol in E.
Language of resulting RE is h(L).

69

[Let
[Let

. Closure under
Homomorphism
1(0) = ab; h(1) = e.

_ be the language of regular

expression 01* + 10*,

0 Then h(L) is the language of regular
expression abe* + e(ab)*.

\ /

Note: use parentheses
to enforce the proper

grouping.

70

— Continued

abe* + e€(ab)* can be simplified.

€* = €, so abe* = abe.

€ is the identity under concatenation.
O0Thatis, eE = Ee = E for any RE £

0 Thus, abe + €(ab)* = ab + (ab)*.

0 Finally, L(ab) is contained in L((ab)*),
so a RE for h(L) is (ab)*.

71

Inverse Homomorphisms

[0 Let h be a homomorphism and L a
anguage whose alphabet is the output
anguage of h.

OhiL) ={w | h(w)isin L}.

72

. Inverse Homomorphism

Let h(0) = ab; h(1) = €.
Let L = {abab, baba}.

h-1(L) = the language with two 0’s and
any number of 1's = L(1*01*01*).

73

Closure Proof for Inverse
Homomorphism

0 Start with a DFA A for L.

0 Construct a DFA B for h-1(L) with:
The same set of states.

The same start state.

The same final states.

Input alphabet = the symbols to which
homomorphism h applies.

74

Proof — (2)

0 The transitions for B are computed by
applying h to an input symbol @ and
seeing where A would go on seguence
of input symbols h(a).

[0 Formally, 85(q, @) = 0,(q, h(a)).

75

. Inverse Homomorphism
Construction

Proof — Inverse Homomorphism

0 An induction on |w| (omitted) shows
that 6B(qu W) = 6A(qu h(W))

0 Thus, B accepts w if and only if A
accepts h(w).

77

