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Decision Properties of Regular 
Languages

General Discussion of “Properties”

The Pumping Lemma

Membership, Emptiness, Etc.



2

Properties of Language Classes

A language class is a set of 
languages.

Example: the regular languages.

Language classes have two important 
kinds of properties:

1. Decision properties.

2. Closure properties.
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Closure Properties

A closure property of a language class 
says that given languages in the class, 
an operation (e.g., union) produces 
another language in the same class.

Example: the regular languages are 
obviously closed under union, 
concatenation, and (Kleene) closure.

Use the RE representation of languages.
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Representation of Languages

Representations can be formal or informal.

Example (formal): represent a language by a 
RE or FA defining it.

Example: (informal): a logical or prose 
statement about its strings:

{0n1n | n is a nonnegative integer}

“The set of strings consisting of some number of 
0’s followed by the same number of 1’s.”
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Decision Properties

A decision property for a class of 
languages is an algorithm that takes a 
formal description of a language (e.g., a 
DFA) and tells whether or not some 
property holds.

Example: Is language L empty?
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Why Decision Properties?

Think about DFA’s representing 
protocols.

Example: “Does the protocol terminate?” 
= “Is the language finite?”

Example: “Can the protocol fail?” = “Is 
the language nonempty?”

Make the final state be the “error” state.
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Why Decision Properties – (2)

We might want a “smallest” 
representation for a language, e.g., a 
minimum-state DFA or a shortest RE.

If you can’t decide “Are these two 
languages the same?”

I.e., do two DFA’s define the same 
language?

You can’t find a “smallest.”
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The Membership Problem

Our first decision property for regular 
languages is the question: “is string w 
in regular language L?”

Assume L is represented by a DFA A.

Simulate the action of A on the 
sequence of input symbols forming w.



9

Example: Testing Membership
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state



10

Example: Testing Membership

Start

1

0

A CB
1

0 0,1

0 1 0 1 1

Next
symbol

Current
state



11

Example: Testing Membership

Start

1

0

A CB
1

0 0,1

0 1 0 1 1

Next
symbol

Current
state



12

Example: Testing Membership

Start

1

0

A CB
1

0 0,1

0 1 0 1 1

Next
symbol

Current
state



13

Example: Testing Membership

Start

1

0

A CB
1

0 0,1

0 1 0 1 1

Next
symbol

Current
state



14

Example: Testing Membership

Start

1

0

A CB
1

0 0,1

0 1 0 1 1

Next
symbol

Current
state



15

What if We Have the Wrong 
Representation?

There is a circle of conversions from 
one form to another:

RE

DFA

NFA

ε-NFA
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The Emptiness Problem

Given a regular language, does the 
language contain any string at all?

Assume representation is DFA.

Compute the set of states reachable 
from the start state.

If at least one final state is reachable, 
then yes, else no.
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The Infiniteness Problem

Is a given regular language infinite?

Start with a DFA for the language.

Key idea: if the DFA has n states, and 
the language contains any string of 
length n or more, then the language is 
infinite.

Otherwise, the language is surely finite.

Limited to strings of length n or less. 
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Proof of Key Idea

If an n-state DFA accepts a string w of 
length n or more, then there must be a 
state that appears twice on the path 
labeled w from the start state to a final 
state.

Because there are at least n+1 states 
along the path.
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Proof – (2)

w = xyz

q
x

y

z

Then xyiz is in the language for all i > 0.

Since y is not ε, we see an infinite

number of strings in L.
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Infiniteness – Continued

We do not yet have an algorithm.

There are an infinite number of strings 
of length > n, and we can’t test them 
all.

Second key idea: if there is a string of 
length > n (= number of states) in L, 
then there is a string of length between 
n and 2n-1.
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Proof of 2nd Key Idea

Remember:

y is the first cycle on the path.

So |xy| < n; in particular, 1 < |y| < n.

Thus, if w is of length 2n or more, there 
is a shorter string in L that is still of 
length at least n.

Keep shortening to reach [n, 2n-1].

x
y

z
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Completion of Infiniteness 
Algorithm

Test for membership all strings of length 
between n and 2n-1.

If any are accepted, then infinite, else finite.

A terrible algorithm.

Better: find cycles between the start 
state and a final state.
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Finding Cycles

1. Eliminate states not reachable from 
the start state.

2. Eliminate states that do not reach a 
final state.

3. Test if the remaining transition graph 
has any cycles.
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Finding Cycles – (2)

But a simple, less efficient way to find 
cycles is to search forward from a given 
node N.

If you can reach N, then there is a 
cycle.

Do this starting at each node.
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The Pumping Lemma

We have, almost accidentally, proved a 
statement that is quite useful for showing 
certain languages are not regular.

Called the pumping lemma for regular 
languages.
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Statement of the Pumping Lemma

For every regular language L

There is an integer n, such that

For every string w in L of length > n

We can write w = xyz such that:

1. |xy| < n.

2. |y| > 0.

3. For all i > 0, xyiz is in L.

Number of
states of
DFA for L

Labels along
first cycle on
path labeled w
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Example: Use of Pumping Lemma

We have claimed {0k1k | k > 1} is not a 
regular language.

Suppose it were.  Then there would be 
an associated n for the pumping lemma.

Let w = 0n1n.  We can write w = xyz, 
where x and y consist of 0’s, and y  ε.

But then xyyz would be in L, and this 
string has more 0’s than 1’s.
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Decision Property: Equivalence

Given regular languages L and M, is     
L = M?

Algorithm involves constructing the 
product DFA from DFA’s for L and M.

Let these DFA’s have sets of states Q 
and R, respectively.

Product DFA has set of states Q  R.

I.e., pairs [q, r] with q in Q, r in R.
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Product DFA – Continued

Start state = [q0, r0] (the start states of 
the DFA’s for L, M).

Transitions: δ([q,r], a) =            
[δL(q,a), δM(r,a)]

δL, δM are the transition functions for the 

DFA’s of L, M.

That is, we simulate the two DFA’s in the 
two state components of the product DFA.
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Example: Product DFA
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0
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0

1

0

1
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0
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Equivalence Algorithm

Make the final states of the product DFA 
be those states [q, r] such that exactly 
one of q and r is a final state of its own 
DFA.

Thus, the product accepts w iff w is in 
exactly one of L and M.

L = M if and only if the product 
automaton’s language is empty.
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Example: Equivalence
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Decision Property: Containment 

Given regular languages L and M, is      L 
 M?

Algorithm also uses the product 
automaton.

How do you define the final states [q, r] 
of the product so its language is empty 
iff L  M?

Answer: q is final; r is not.
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Example: Containment

A

C

B

D

0

1

0, 1

1

1

0
0

[A,C] [A,D]
0

[B,C]

1

0

1

0

1

[B,D]

0

1

Note: the only final state
is unreachable, so
containment holds.
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The Minimum-State DFA for a 
Regular Language

In principle, since we can test for 
equivalence of DFA’s we can, given a 
DFA A find the DFA with the fewest 
states accepting L(A).

Test all smaller DFA’s for equivalence 
with A.

But that’s a terrible algorithm.
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Efficient State Minimization

Construct a table with all pairs of 
states.

If you find a string that distinguishes
two states (takes exactly one to an 
accepting state), mark that pair.

Algorithm is a recursion on the length 
of the shortest distinguishing string.
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State Minimization – (2)

Basis: Mark pairs with exactly one final state.

Induction: mark [q, r] if for some input 
symbol a, [δ(q,a), δ(r,a)] is marked.

After no more marks are possible, the 
unmarked pairs are equivalent and can be 
merged into one state.
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Transitivity of “Indistinguishable”

If state p is indistinguishable from q, 
and q is indistinguishable from r, then p 
is indistinguishable from r.

Proof: The outcome (accept or don’t) of 
p and q on input w is the same, and the 
outcome of q and r on w is the same, 
then likewise the outcome of p and r.
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Constructing the Minimum-
State DFA

Suppose q1,…,qk are indistinguishable states.

Replace them by one representative state q.

Then δ(q1, a),…, δ(qk, a) are all 

indistinguishable states.

Key point: otherwise, we should have marked at 
least one more pair.

Let δ(q, a) = the representative state for that 

group.
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Example: State Minimization

r b

{1}

* {1,3,5,7,9} {2,4,6,8} {1,3,5,7,9}

*   {1,3,7,9} {2,4,6,8}     {5}

{2,4,6,8} {1,3,5,7,9}{2,4,6,8}

{2,4,6,8}  {1,3,7,9}{5}

{2,4} {2,4,6,8}  {1,3,5,7}

{1,3,5,7}

{2,4}       {5}

{2,4,6,8} {1,3,5,7,9}

Remember this DFA? It was constructed for the
chessboard NFA by the subset construction. 

r   b
A B  C
B D  E
C D  F
D D  G
E D  G
F D  C
G D  G

*

*

Here it is
with more
convenient
state names
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Example – Continued

r   b
A B  C
B D  E
C D  F
D D  G
E D  G
F D  C
G D  G

*

*

G   F   E   D   C   B
A
B
C
D
E
F

x

x

x

x

x

x

x

x

x

x

Start with marks for
the pairs with one of
the final states F or G.
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Example – Continued

r   b
A B  C
B D  E
C D  F
D D  G
E D  G
F D  C
G D  G

*

*

G   F   E   D   C   B
A
B
C
D
E
F

x

x

x

x

x

x

x

x

x

x

Input r gives no help,
because the pair [B, D]
is not marked.
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Example – Continued

r   b
A B  C
B D  E
C D  F
D D  G
E D  G
F D  C
G D  G

*

*

G   F   E   D   C   B
A
B
C
D
E
F

x

x

x

x

x

x

x

x

x

x

But input b distinguishes {A,B,F}
from {C,D,E,G}.  For example, [A, C]
gets marked because [C, F] is marked.

x

x x

x

x

x x
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Example – Continued

r   b
A B  C
B D  E
C D  F
D D  G
E D  G
F D  C
G D  G

*

*

G   F   E   D   C   B
A
B
C
D
E
F

x

x

x

x

x

x

x

x

x

x

[C, D] and [C, E] are marked
because of transitions on b to
marked pair [F, G]. 

x

x x

x

x

x x

x x
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Example – Continued

r   b
A B  C
B D  E
C D  F
D D  G
E D  G
F D  C
G D  G

*

*

G   F   E   D   C   B
A
B
C
D
E
F

x

x

x

x

x

x

x

x

x

x

[A, B] is marked
because of transitions on r
to marked pair [B, D]. 

x

x x

x

x

x x

x x

x

[D, E] can never be marked,
because on both inputs they
go to the same state.
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Example – Concluded

r   b
A B  C
B D  E
C D  F
D D  G
E D  G
F D  C
G D  G

*

*

G   F   E   D   C   B
A
B
C
D
E
F

x

x

x

x

x

x

x

x

x

x

x

x x

x

x

x x

x x

x
r   b

A B  C
B H  H
C H  F
H H  G

F H  C
G H  G

*

*

Replace D and E by H.
Result is the minimum-state DFA.
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Eliminating Unreachable States

Unfortunately, combining 
indistinguishable states could leave us 
with unreachable states in the 
“minimum-state” DFA.

Thus, before or after, remove states 
that are not reachable from the start 
state.
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Clincher

We have combined states of the given 
DFA wherever possible.

Could there be another, completely 
unrelated DFA with fewer states?

No.  The proof involves minimizing the 
DFA we derived with the hypothetical 
better DFA.
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Proof: No Unrelated, Smaller DFA

Let A be our minimized DFA; let B be a 
smaller equivalent.

Consider an automaton with the states of 
A and B combined.

Use “distinguishable” in its contrapositive 
form:

If states q and p are indistinguishable, so are 
δ(q, a) and δ(p, a).
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Inferring Indistinguishability

q0

p0

Start states
of A and B
indistinguishable
because L(A)
= L(B).

a
q

p
a

Must be
indistinguishable

b
r

s
b

Must be
indistinguishable
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Inductive Hypothesis

Every state q of A is indistinguishable 
from some state of B.

Induction is on the length of the 
shortest string taking you from the start 
state of A to q.
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Proof – (2)

Basis: Start states of A and B are 
indistinguishable, because L(A) = L(B).

Induction: Suppose w = xa is a shortest 
string getting A to state q.

By the IH, x gets A to some state r that is 
indistinguishable from some state p of B.

Then δA(r, a) = q is indistinguishable from    
δB(p, a).
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Proof – (3)

However, two states of A cannot be 
indistinguishable from the same state of 
B, or they would be indistinguishable 
from each other.

Violates transitivity of “indistinguishable.”

Thus, B has at least as many states as 
A.
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Closure Properties of Regular 
Languages

Union, Intersection, Difference, 
Concatenation, Kleene Closure, 

Reversal, Homomorphism, Inverse 
Homomorphism
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Closure Under Union

If L and M are regular languages, so is 
L  M.

Proof: Let L and M be the languages of 
regular expressions R and S, 
respectively.

Then R+S is a regular expression whose 
language is L  M.
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Closure Under Concatenation 
and Kleene Closure

Same idea:

RS is a regular expression whose language 
is LM.

R* is a regular expression whose language 
is L*.
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Closure Under Intersection

If L and M are regular languages, then 
so is L  M.

Proof: Let A and B be DFA’s whose 
languages are L and M, respectively.

Construct C, the product automaton of A 
and B.

Make the final states of C be the pairs 
consisting of final states of both A and B.
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Example: Product DFA for 
Intersection

A

C

B

D

0

1

0, 1

1

1

0
0

[A,C] [A,D]
0

[B,C]

1

0

1

0

1

[B,D]

0

1
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Example: Use of Closure Property

We proved L1 = {0n1n | n > 0} is not a 
regular language.

L2 = the set of strings with an equal 
number of 0’s and 1’s isn’t either, but 
that fact is trickier to prove.

Regular languages are closed under .

If L2 were regular, then L2 L(0*1*) = 
L1 would be, but it isn’t.
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Closure Under Difference

If L and M are regular languages, then 
so is L – M = strings in L but not M.

Proof: Let A and B be DFA’s whose 
languages are L and M, respectively.

Construct C, the product automaton of A 
and B.

Final states of C are the pairs whose A-
state is final but whose B-state is not.
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Example: Product DFA for 
Difference

A

C

B

D

0

1

0, 1

1

1

0
0

[A,C] [A,D]
0

[B,C]

1

0

1

0

1

[B,D]

0

1
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Closure Under Complementation

The complement of a language L (with 
respect to an alphabet Σ such that Σ* 
contains L) is Σ* – L.

Since Σ* is surely regular, the 

complement of a regular language is 
always regular.
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Closure Under Reversal

Recall example of a DFA that accepted 
the binary strings that, as integers were 
divisible by 23.

We said that the language of binary 
strings whose reversal was divisible by 
23 was also regular, but the DFA 
construction was tricky.

Here’s the “tricky” construction.
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Closure Under Reversal – (2)

Given language L, LR is the set of strings 
whose reversal is in L.

Example: L = {0, 01, 100};                     
LR = {0, 10, 001}.

Proof: Let E be a regular expression for L.  
We show how to reverse E, to provide a 
regular expression ER for LR.
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Reversal of a Regular Expression

Basis: If E is a symbol a, ε, or ∅, then 

ER = E.

Induction: If E is

F+G, then ER = FR + GR.

FG, then ER = GRFR

F*, then ER = (FR)*.
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Example: Reversal of a RE

Let E = 01* + 10*.

ER = (01* + 10*)R = (01*)R + (10*)R

= (1*)R0R + (0*)R1R

= (1R)*0 + (0R)*1

= 1*0 + 0*1.
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Homomorphisms

A homomorphism  on an alphabet is a 
function that gives a string for each 
symbol in that alphabet.

Example: h(0) = ab; h(1) = ε.

Extend to strings by h(a1…an) = 
h(a1)…h(an).

Example: h(01010) = ababab.
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Closure Under Homomorphism

If L is a regular language, and h is a 
homomorphism on its alphabet, then h(L)
= {h(w) | w is in L} is also a regular 
language.

Proof: Let E be a regular expression for L.

Apply h to each symbol in E.

Language of resulting RE is h(L).
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Example: Closure under 
Homomorphism

Let h(0) = ab; h(1) = ε.

Let L be the language of regular 
expression 01* + 10*.

Then h(L) is the language of regular 
expression abε* + ε(ab)*.

Note: use parentheses
to enforce the proper
grouping.
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Example – Continued

abε* + ε(ab)* can be simplified.

ε* = ε, so abε* = abε.

ε is the identity under concatenation.

That is, εE = Eε = E for any RE E.

Thus, abε + ε(ab)* = ab + (ab)*.

Finally, L(ab) is contained in L((ab)*), 
so a RE for h(L) is (ab)*.
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Inverse Homomorphisms

Let h be a homomorphism and L a 
language whose alphabet is the output 
language of h.

h-1(L) = {w | h(w) is in L}.
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Example: Inverse Homomorphism

Let h(0) = ab; h(1) = ε.

Let L = {abab, baba}.

h-1(L) = the language with two 0’s and 
any number of 1’s = L(1*01*01*).
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Closure Proof for Inverse 
Homomorphism

Start with a DFA A for L.

Construct a DFA B  for h-1(L) with:

The same set of states.

The same start state.

The same final states.

Input alphabet = the symbols to which 
homomorphism h applies.
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Proof – (2)

The transitions for B are computed by 
applying h to an input symbol a and 
seeing where A would go on sequence 
of input symbols h(a).

Formally, δB(q, a) = δA(q, h(a)).
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Example: Inverse Homomorphism 
Construction

A

C

B

a

a

a

b b

b

C

B

A

h(0) = ab
h(1) = ε

1

1

1 Since
h(1) = ε

0

0

, 0

Since
h(0) = ab
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Proof – Inverse Homomorphism

An induction on |w| (omitted) shows 
that δB(q0, w) = δA(q0, h(w)).

Thus, B accepts w if and only if A 
accepts h(w).


