Reqgular Expressions

Definitions
Equivalence to Finite Automata

RE’s: Introduction

0 Regular expressions describe
languages by an algebra.

[0 They describe exactly the regular
languages.

0 If E is a regular expression, then L(E) is
the language it defines.

0 We'll describe RE’s and their languages
recursively.

Operations on Languages

[0 RE’s use three operations: union,
concatenation, and Kleene star.

00 The union of languages is the usual
thing, since languages are sets.

0 : {01,111,10}.400, 01} =
{01,111,10,00}.

Concatenation

0 The concatenation of languages L and M
iS denoted LM.

[0 It contains every string wx such that w is
in Land x is in M.

i . {01,111,10}{00, 01} =
{0100, 0101, 11100, 11101, 1000,
1001}.

Kleene Star

O0If L is a language, then L*, the Kleene
star or just “star,” is the set of strings
formed by concatenating zero or more
strings from L, in any order.

Ol*={e}ulLuUlLLULLLuU...
[: {0,10}* = {¢, 0, 10, 00, 010,
100, 1010,...}

RE’s: Definition

0 Basis 1: If @ is any symbol, then a is a
RE, and L(a) = {a}.

[0 Note: {a} is the language containing one
string, and that string is of length 1.

0 Basis 2: € is a RE, and L(e) = {e€}.
[0 Basis 3: @ isa RE, and L(v) = 2.

RE’s: Definition — (2)

O Induction 1: If E; and E, are regular
expressions, then E,;+E, is a regular
expression, and L(E,+E,) = L(E,)UL(E,).

O Induction 2: If E; and E, are regular
expressions, then E,E, is a regular
expression, and L(E,E,) = L(E,)L(E,).

0 Induction 3: If E is a RE, then E* is a RE,
and L(E*) = (L(E))*.

Precedence of Operators

[0 Parentheses may be used wherever
needed to influence the grouping of
operators.

0 Order of precedence is * (highest), then
concatenation, then + (lowest).

: RE’s

L(01) = {01}.
L(01+0) = {01, O}.

L(0(1+0)) = {01, 00}.

[0 Note order of precedence of operators.
O0L(0*) ={€, 0, 00, 000,... }.
O0L((0+10)*(e+1)) = all strings of 0’s
and 1's without two consecutive 1’s.

Equivalence of RE’s and Finite
Automata

[0 We need to show that for every RE,
there is a finite automaton that accepts
the same language.

1 Pick the most powerful automaton type: the
e-NFA.

[0 And we need to show that for every
finite automaton, there is a RE defining
its language.

[0 Pick the most restrictive type: the DFA. 4

Converting a RE to an e-NFA

0 Proof is an induction on the number of
operators (+, concatenation, *) in the
RE.

[0 We always construct an automaton of a
special form (next slide).

11

Form of e-NFA’s Constructed

Start state:
Only state Only state
with external with external
predecessors SUCCessors

“Final” state:

12

RE to e-NFA: Basis
0 Symbol a: O—2—0O
e O—O
0 ©: O O

RE to e-NFA: Induction 1 — Union

For E, U E,

RE to e-NFA: Induction 2 —
Concatenation

() Forg () : () Forg, ()

For E,E,

RE to e-NFA: Induction 3 — Closure

DFA-to-RE

A strange sort of induction.

States of the DFA are named 1,2,...,n.

Induction is on k, the maximum state
number we are allowed to traverse
along a path.

17

k-Paths

0 A k-path is a path through the graph of
the DFA that goes no state
numbered higher than k.

0 Endpoints are not restricted; they can
be any state.

[0 n-paths are unrestricted.

[0 RE is the union of RE’s for the n-paths
from the start state to each final state.

18

: k-Paths

0-paths from 2 to 3:
RE for labels = 0.

1-paths from 2 to 3:
RE for labels = 0+11.

2-paths from 2 to 3:
RE for labels =
(10)*0+1(01)*1

3-paths from 2 to 3:
RE for labels = ?7? 19

DFA-to-RE

0 Basis: k = 0; only arcs or a node by
itself.

0 Induction: construct RE’s for paths
allowed to pass through state k from
paths allowed only up to k-1.

20

k-Path Induction

[Let Ry* be the regular expression for the
set of labels of k-paths from state i to
state j.

[0 Basis: k=0. R;® = sum of labels of arc
from i to j.
0 @ if no such arc.
0 But add € if i=j.

21

OR,,°

: Basis

0.

2 + € = €,
\

Notice algebraic law:

& plus anything =
that thing.

22

k-Path Inductive Case

0 A k-path from i to j either:
1. Never goes through state k, or
2. Goes through k one or more times.

Rk = Ry 1 + RylL(R F1)* Ryt

/" oo \
_Goes from Then, from
Doesnt go ito k the K to]
through k first time Zero or
more times

from k to k

23

Illustration of Induction

Path to k
Paths not going

through k From k to k

Several times/P
o

»
K
»

States < k

"a,
a,
"a

P
"
......
"
"y

24

Final Step

0 The RE with the same language as the
DFA is the sum (union) of R;", where:

1. nis the number of states; i.e., paths are
unconstrained.

2. iis the start state.
3. jis one of the final states.

25

R233 = R232 + R232(R332)*R332 = R232(R332)>|<
R,;%2 = (10)*0+1(01)*1

R;;2 =€ + 0(01)*(1+00) + 1(10)*(0+11)
R,53 = [(10)*0+1(01)*1] [e +
(0(01)*(1+00) + 1(10)*(0+11))]*

26

Summary

0 Each of the three types of automata
(DFA, NFA, e-NFA) we discussed, and
regular expressions as well, define
exactly the same set of languages: the
regular languages.

27

Algebraic Laws for RE’s

[0 Union and concatenation behave sort of
like addition and muiltiplication.

0+ is commutative and associative;
concatenation is associative.

[0 Concatenation distributes over +.

[0 Exception: Concatenation is not
commutative.

28

Identities and Annihilators

0 @ is the identity for +.
OR+ o =R.

0 € is the identity for concatenation.
[0eR = Re = R.

0 @ is the annihilator for concatenation.
0 oR = Rg = @.

29

Applications of Regular
EXpressions

Unix RE’s
Text Processing
Lexical Analysis

30

Some Applications

[0 RE’s appear in many systems, often
private software that needs a simple
language to describe sequences of
events.

0 We'll use Junglee as an example, then
talk about text processing and lexical
analysis.

31

Junglee

[0 Started in the mid-90’s by three of my
students, Ashish Gupta, Anand
Rajaraman, and Venky Harinarayan.

[0 Goal was to integrate information from
Web pages.

[0 Bought by Amazon when Yahoo! hired
them to build a comparison shopper for
books.

32

Integrating Want Ads

0 Junglee’s first contract was to integrate

on-line want ads into a queryab

[0 Each company organized its em
pages differently.

e table.

bloyment

[0 Worse: the organization typically changed

weekly.

33

Junglee’s Solution

[0 They developed a regular-expression
language for navigating within a page
and among pages.

0 Input symbols were:

_etters, for forming words like “salary”.

HTML tags, for following structure of page.

_inks, to jump between pages.

34

Junglee’s Solution — (2)

0 Engineers could then write RE’s to
describe how to find key information at
a Web site.

0 E.g., position title, salary, requirements,...

[0 Because they had a little language, they
could incorporate new sites quickly, and
they could modify their strategy when
the site changed.

35

RE-Based Software Architecture

[0 Junglee used a common form of
architecture:

[0 Use RE’s plus actions (arbitrary code) as
your input language.

[0 Compile into a DFA or simulated NFA.

[0 Each accepting state is associated with an
action, which is executed when that state
IS entered.

36

UNIX Reqgular Expressions

0 UNIX, from the beginning, used regular
expressions in many places, including
the “grep” command.

0 Grep = “Global (search for a) Regular
Expression and Print.”

0 Most UNIX commands use an extended
RE notation that still defines only
regular languages.

37

UNIX RE Notation

0 [aja,...a,] is shorthand for a,;+a,+...+a,.

0 Ranges indicated by first-dash-last and
brackets.
0 Order is ASCII.

[: [@-z] = “any lower-case letter,”
[a-zA-Z] = “any letter.”

0 Dot = “any character.”

38

UNIX RE Notation — (2)

0| is used for union instead of +.

0 But + has a meaning: “one or more of.”
O0E+ = EE*.

[: [@-z]+ = “one or more lower-
case letters.
07?7 = “zero or one of.”
O0E? =E + €.

0 : [ab]? = “an optional g or b.”

39

. Text Processing

[0 Remember our DFA for recognizing
strings that end in “ing™?

[0 It was rather tricky.

[0 But the RE for such strings is easy:
.*ing where the dot is the UNIX “any”.

[0 Even an NFA is easy (next slide).

40

NFA for “"Ends in /ing "

41

Lexical Analysis

0 The first thing a compiler does is break
a program into fokens = substrings
that together represent a unit.

[: identifiers, reserved words like
“if,” meaningful single characters like ;" or
“+" multicharacter operators like "<=",

42

Lexical Analysis — (2)

[0 Using a tool like Lex or Flex, one can
write a regular expression for each
different kind of token.

0 : in UNIX notation, identifiers
are something like [A-Za-z][A-Za-z0-9]*.

[0 Each RE has an associated action.
0 : return a code for the token found.

43

Tricks for Combining Tokens

[0 There are some ambiguities that need
to be resolved as we convert RE’s to a
DFA.

[]

1. “if” looks like an identifier, but it is a
reserved word.

2. < might be a comparison operator, but if
followed by =, then the token is <=.

44

Tricks — (2)

[0 Convert the RE for each token to an
e—NFA.

[0 Each has its own final state.

[0 Combine these all by introducing a new
start state with e-transitions to the start

states of each e—NFA.
[0 Then convert to a DFA.

45

Tricks — (3)

00 If a DFA state has several final states
among its members, give them priority.

[: Give all reserved words
priority over identifiers, so if the DFA

arrives at a state that contains final
states for the “if” e—NFA as well as for

the identifier e-NFA, if declares “if”, not
identifier.

46

Tricks — (4)

0 It's a bit more complicated, because the
DFA has to have an additional power.

0 It must be able to read an input symbol
and then, when it accepts, put that
symbol back on the input to be read
later.

47

 Put-Back

0 Suppose "“<” is the first input symbol.

[0 Read the next input symbol.

OIf it is "=" accept and declare the token is
<=,

O If it is anything else, put it back and
declare the token is <.

48

. Put-Back — (2)

[0 Suppose "if” has been read from the
input.

[0 Read the next input symbol.

O If it is a letter or digit, continue processing.

* You did not have reserved word “if”; you are
working on an identifier.

0 Otherwise, put it back and declare the
token is “if".

49

