
1

Regular Expressions

Definitions

Equivalence to Finite Automata

2

RE’s: Introduction

Regular expressions describe
languages by an algebra.

They describe exactly the regular
languages.

If E is a regular expression, then L(E) is
the language it defines.

We’ll describe RE’s and their languages
recursively.

3

Operations on Languages

RE’s use three operations: union,
concatenation, and Kleene star.

The union of languages is the usual
thing, since languages are sets.

Example: {01,111,10}{00, 01} =
{01,111,10,00}.

4

Concatenation

The concatenation of languages L and M
is denoted LM.

It contains every string wx such that w is
in L and x is in M.

Example: {01,111,10}{00, 01} =
{0100, 0101, 11100, 11101, 1000,
1001}.

5

Kleene Star

If L is a language, then L*, the Kleene
star or just “star,” is the set of strings
formed by concatenating zero or more
strings from L, in any order.

L* = {ε}  L  LL  LLL  …

Example: {0,10}* = {ε, 0, 10, 00, 010,

100, 1010,…}

6

RE’s: Definition

Basis 1: If a is any symbol, then a is a
RE, and L(a) = {a}.

Note: {a} is the language containing one
string, and that string is of length 1.

Basis 2: ε is a RE, and L(ε) = {ε}.

Basis 3: ∅ is a RE, and L(∅) = ∅.

7

RE’s: Definition – (2)

Induction 1: If E1 and E2 are regular
expressions, then E1+E2 is a regular
expression, and L(E1+E2) = L(E1)L(E2).

Induction 2: If E1 and E2 are regular
expressions, then E1E2 is a regular
expression, and L(E1E2) = L(E1)L(E2).

Induction 3: If E is a RE, then E* is a RE,
and L(E*) = (L(E))*.

8

Precedence of Operators

Parentheses may be used wherever
needed to influence the grouping of
operators.

Order of precedence is * (highest), then
concatenation, then + (lowest).

9

Examples: RE’s

L(01) = {01}.

L(01+0) = {01, 0}.

L(0(1+0)) = {01, 00}.

Note order of precedence of operators.

L(0*) = {ε, 0, 00, 000,… }.

L((0+10)*(ε+1)) = all strings of 0’s

and 1’s without two consecutive 1’s.

10

Equivalence of RE’s and Finite
Automata

We need to show that for every RE,
there is a finite automaton that accepts
the same language.

Pick the most powerful automaton type: the
ε-NFA.

And we need to show that for every
finite automaton, there is a RE defining
its language.

Pick the most restrictive type: the DFA.

11

Converting a RE to an ε-NFA

Proof is an induction on the number of
operators (+, concatenation, *) in the
RE.

We always construct an automaton of a
special form (next slide).

12

Form of ε-NFA’s Constructed

No arcs from outside,
no arcs leavingStart state:

Only state
with external
predecessors

“Final” state:
Only state
with external
successors

13

RE to ε-NFA: Basis

Symbol a:

ε:

∅:

a

ε

14

RE to ε-NFA: Induction 1 – Union

For E1

For E2

For E1  E2

ε

ε ε

ε

15

RE to ε-NFA: Induction 2 –

Concatenation

For E1 For E2

For E1E2

ε

16

RE to ε-NFA: Induction 3 – Closure

For E

For E*

ε

ε

εε

17

DFA-to-RE

A strange sort of induction.

States of the DFA are named 1,2,…,n.

Induction is on k, the maximum state
number we are allowed to traverse
along a path.

18

k-Paths

A k-path is a path through the graph of
the DFA that goes through no state
numbered higher than k.

Endpoints are not restricted; they can
be any state.

n-paths are unrestricted.

RE is the union of RE’s for the n-paths
from the start state to each final state.

19

Example: k-Paths

1

3

2
0

00

1

1 1

0-paths from 2 to 3:
RE for labels = 0.

1-paths from 2 to 3:
RE for labels = 0+11.

2-paths from 2 to 3:
RE for labels =
(10)*0+1(01)*1

3-paths from 2 to 3:
RE for labels = ??

20

DFA-to-RE

Basis: k = 0; only arcs or a node by
itself.

Induction: construct RE’s for paths
allowed to pass through state k from
paths allowed only up to k-1.

21

k-Path Induction

Let Rij
k be the regular expression for the

set of labels of k-paths from state i to
state j.

Basis: k=0. Rij
0 = sum of labels of arc

from i to j.

∅ if no such arc.

But add ε if i=j.

22

Example: Basis

R12
0 = 0.

R11
0 = ∅ + ε = ε.

1

3

2
0

00

1

1 1

Notice algebraic law:
∅ plus anything =

that thing.

23

k-Path Inductive Case

A k-path from i to j either:

1. Never goes through state k, or

2. Goes through k one or more times.

Rij
k = Rij

k-1 + Rik
k-1(Rkk

k-1)* Rkj
k-1.

Doesn’t go
through k

Goes from
i to k the
first time Zero or

more times
from k to k

Then, from
k to j

24

Illustration of Induction

States < k

k

i

j

Paths not going
through k

From k
to j

From k to k
Several times

Path to k

25

Final Step

The RE with the same language as the
DFA is the sum (union) of Rij

n, where:

1. n is the number of states; i.e., paths are
unconstrained.

2. i is the start state.

3. j is one of the final states.

26

Example

R23
3 = R23

2 + R23
2(R33

2)*R33
2 = R23

2(R33
2)*

R23
2 = (10)*0+1(01)*1

R33
2 = ε + 0(01)*(1+00) + 1(10)*(0+11)

R23
3 = [(10)*0+1(01)*1] [ε +

(0(01)*(1+00) + 1(10)*(0+11))]*

1

3

2
0

00

1

1 1

Start

27

Summary

Each of the three types of automata
(DFA, NFA, ε-NFA) we discussed, and

regular expressions as well, define
exactly the same set of languages: the
regular languages.

28

Algebraic Laws for RE’s

Union and concatenation behave sort of
like addition and multiplication.

+ is commutative and associative;
concatenation is associative.

Concatenation distributes over +.

Exception: Concatenation is not
commutative.

29

Identities and Annihilators

∅ is the identity for +.

R + ∅ = R.

ε is the identity for concatenation.

εR = Rε = R.

∅ is the annihilator for concatenation.

∅R = R∅ = ∅.

30

Applications of Regular
Expressions

Unix RE’s

Text Processing

Lexical Analysis

31

Some Applications

RE’s appear in many systems, often
private software that needs a simple
language to describe sequences of
events.

We’ll use Junglee as an example, then
talk about text processing and lexical
analysis.

32

Junglee

Started in the mid-90’s by three of my
students, Ashish Gupta, Anand
Rajaraman, and Venky Harinarayan.

Goal was to integrate information from
Web pages.

Bought by Amazon when Yahoo! hired
them to build a comparison shopper for
books.

33

Integrating Want Ads

Junglee’s first contract was to integrate
on-line want ads into a queryable table.

Each company organized its employment
pages differently.

Worse: the organization typically changed
weekly.

34

Junglee’s Solution

They developed a regular-expression
language for navigating within a page
and among pages.

Input symbols were:

Letters, for forming words like “salary”.

HTML tags, for following structure of page.

Links, to jump between pages.

35

Junglee’s Solution – (2)

Engineers could then write RE’s to
describe how to find key information at
a Web site.

E.g., position title, salary, requirements,…

Because they had a little language, they
could incorporate new sites quickly, and
they could modify their strategy when
the site changed.

36

RE-Based Software Architecture

Junglee used a common form of
architecture:

Use RE’s plus actions (arbitrary code) as
your input language.

Compile into a DFA or simulated NFA.

Each accepting state is associated with an
action, which is executed when that state
is entered.

37

UNIX Regular Expressions

UNIX, from the beginning, used regular
expressions in many places, including
the “grep” command.

Grep = “Global (search for a) Regular
Expression and Print.”

Most UNIX commands use an extended
RE notation that still defines only
regular languages.

38

UNIX RE Notation

[a1a2…an] is shorthand for a1+a2+…+an.

Ranges indicated by first-dash-last and
brackets.

Order is ASCII.

Examples: [a-z] = “any lower-case letter,”
[a-zA-Z] = “any letter.”

Dot = “any character.”

39

UNIX RE Notation – (2)

| is used for union instead of +.

But + has a meaning: “one or more of.”
E+ = EE*.

Example: [a-z]+ = “one or more lower-
case letters.

? = “zero or one of.”
E? = E + ε.

Example: [ab]? = “an optional a or b.”

40

Example: Text Processing

Remember our DFA for recognizing
strings that end in “ing”?

It was rather tricky.

But the RE for such strings is easy:
.*ing where the dot is the UNIX “any”.

Even an NFA is easy (next slide).

41

NFA for “Ends in ing ”

Start

any

i n g

42

Lexical Analysis

The first thing a compiler does is break
a program into tokens = substrings
that together represent a unit.

Examples: identifiers, reserved words like
“if,” meaningful single characters like “;” or
“+”, multicharacter operators like “<=”.

43

Lexical Analysis – (2)

Using a tool like Lex or Flex, one can
write a regular expression for each
different kind of token.

Example: in UNIX notation, identifiers
are something like [A-Za-z][A-Za-z0-9]*.

Each RE has an associated action.

Example: return a code for the token found.

44

Tricks for Combining Tokens

There are some ambiguities that need
to be resolved as we convert RE’s to a
DFA.

Examples:

1. “if” looks like an identifier, but it is a
reserved word.

2. < might be a comparison operator, but if
followed by =, then the token is <=.

45

Tricks – (2)

Convert the RE for each token to an
ε–NFA.

Each has its own final state.

Combine these all by introducing a new
start state with ε-transitions to the start
states of each ε–NFA.

Then convert to a DFA.

46

Tricks – (3)

If a DFA state has several final states
among its members, give them priority.

Example: Give all reserved words
priority over identifiers, so if the DFA
arrives at a state that contains final
states for the “if” ε–NFA as well as for
the identifier ε–NFA, if declares “if”, not

identifier.

47

Tricks – (4)

It’s a bit more complicated, because the
DFA has to have an additional power.

It must be able to read an input symbol
and then, when it accepts, put that
symbol back on the input to be read
later.

48

Example: Put-Back

Suppose “<” is the first input symbol.

Read the next input symbol.

If it is “=”, accept and declare the token is
<=.

If it is anything else, put it back and
declare the token is <.

49

Example: Put-Back – (2)

Suppose “if” has been read from the
input.

Read the next input symbol.

If it is a letter or digit, continue processing.

• You did not have reserved word “if”; you are
working on an identifier.

Otherwise, put it back and declare the
token is “if”.

