Deterministic Finite Automata

Alphabets, Strings, and Languages
Transition Graphs and Tables
Some Proof Techniques

Alphabets

0 An alphabet is any finite set of
symbols.

0 Examples:
ASCII, Unicode,
{0,1Y (binary alphabet),

{a,b,c}, {s,0},
set of signals used by a protocol.

Strings

0 A string over an alphabet 2 is a list, each
element of which is a member of 2.

[0 Strings shown with no commas or quotes,
e.g., abc or 01101.

03>* = set of all strings over alphabet 2.

0 The /ength of a string is its number of
positions.

[0 € stands for the empty string (string of
length 0).

: Strings

0{0,13* = {¢, 0, 1, 00, 01, 10, 11, 000,
001, ...}

0 Subtlety: 0 as a string, 0 as a symbol
look the same.

[0 Context determines the type.

Languages

O0A /anguage is a subset of 2* for some
alphabet 2.

0 : The set of strings of 0’s and
1's with no two consecutive 1’s.

oL ={e 0,1, 00, 01, 10, 000, 001, 010,
100, 101, 0000, 0001, 0010, 0100,
0101, 1000, 1001, 1010, ... }

Deterministic Finite Automata

0 A formalism for defining languages,
consisting of:

A finite set of states (Q, typically).
An /nput alphabet (Z, typically).

A transition function (9, typically).

A start state (qg, in Q, typically).
A set of final states (F < Q, typically).

0 “Final” and “accepting” are synonyms.

A S

The Transition Function

[Takes two arguments: a state and an
input symbol.

00(qg, a) = the state that the DFA goes to

when it is in state g and input g is
received.

0 . always a next state — add a dead
state if no transition (Example on next
slide).

Start @
/ }

o

S, 0 Dead S0

Graph Representation of DFA’s

[0 Nodes = states.

[0 Arcs represent transition function.

[0 Arc from state p to state g labeled by all
those input symbols that have transitions
from p to g.

0 Arrow labeled “Start” to the start state.
[0 Final states indicated by double circles.

. Recognizing Strings
Ending in “ing”

Not /or g

Not /

Start

. Protocol for Sending
Data

data in ‘ timeout
Resty—Genang

ack

11

. Strings With No 11

Stat 0

String so far String so far Consecutive
hasno 11, hasno 11, 1'shave
does not butendsin been seen.
endinl. a single 1.

12

Alternative Representation:
Transition Table

Final states
starred

. Columns =
input symbols

O Xr > | O

A
Arrow for x B
start state C

Rows = states i ‘ . 0,1
Each entry is o
of the row and >tart
column.

\
OO W |+~

: Strings and Symbols

0 ... W, X, Y, Z are strings.
0 a, b, c,... are single input symbols.

14

Extended Transition Function

[0 We describe the effect of a string of
inputs on a DFA by extending o to a

state and a string.
0 : Extended 0o is computed for

state g and inputs a,a,...a, by following
a path in the transition graph, starting
at g and selecting the arcs with labels
ay, @y,..., @, In turn,

15

Inductive Definition of
Extended o

Induction on length of string.
Basis: 0(q, €) = @
Induction: o(q,wa) = d(do(q,w),a)

[» W IS a string; a is an input
symbol, by convention.

16

: Extended Delta

O ®>
OX» > O
OO W

o(B,011) = 8(d(B,01),1) = o(5(2(B,0),1),1) =

5(5(A,1),1) = 8(B,1) = C

17

Delta-hat

[0 We don't distinguish between the given
delta and the extended delta or delta-
hat.

0 The reason:
D 6(ql a) - 6(a(ql E)l a) = 6(ql a)

N/

Extended deltas

18

Language of a DFA

00 Automata of all kinds define languages.

0 If A is an automaton, L(A) is its
language.
[0 For a DFA A, L(A) is the set of strings

labeling paths from the start state to a
final state.

[: L(A) = the set of strings w
such that o(q,, w) is in F.

19

Start

. String in a Language

String 101 is in the language of the DFA below.
Start at A.

0 0,1

O G

0

20

. String in a Language

String 101 is in the language of the DFA below.

Follow arc labeled 1.

Start

21

Start

0

. String in a Language

String 101 is in the language of the DFA below.

Then arc labeled 0 from current state B.
0,1

22

. String in a Language

String 101 is in the language of the DFA below.

Finally arc labeled 1 from current state A. Result
iS an accepting state, so 101 is in the language.

0,1

0
Jete g
0

Start

23

— Concluded

[0 The language of our example DFA is:
{vy | wisin {0,1}* and w does not have

\ two consecutive 1's}

Such that... These conditions

about w are true.

Read a set former as
“The set of strings w...

24

Proofs of Set Equivalence

[0 Often, we need to prove that two
descriptions of sets are in fact the same
set.

[0 Here, one set is “the language of this
DFA,” and the other is “the set of
strings of 0's and 1's with no
consecutive 1's.”

25

Proofs — (2)

0 In general, to prove S = T, we need to
provetwo parts: S Tand T c S.

That is:

1. IfwisinS, thenw isinT.
2. IfwisinT, thenwis in S.

0 Here, S = the language of our running
DFA, and T = “"no consecutive 1's.”

26

Part 1. S ST

0 0,1
0 To prove: if w is accepted by

: , Start 0
then w has no consecutive 1’'s.

0 Proof is an induction on length of w.

0 . Expand the inductive
hypothesis to be more detailed than the
statement you are trying to prove.

27

The Inductive Hypothesis

1. If o(A, w) = A, then w has no
consecutive 1's and does not end in 1.
2. If o(A, w) = B, then w has no
consecutive 1's and ends in a single 1.
0 Basis; [w| = 0; i.e., w = €.
O holds since € has no 1’'s at all.
(2) holds vacuously, since d(A, €) is not B.

length of < If the "if” part of "if..then” is false, ,,
the statement is true.

0 0,1
Inductive Step

Start 0
[0 Assume (1) and (2) are true for strings
shorter than w, where |w| is at least 1.

[1 Because w is not empty, we can write w
= xa, where g is the last symbol of w,
and x is the string that precedes.

0 IH is true for X.

29

0 0,
Inductive Step — (2) 1

Start 0

[0 Need to prove (1) and (2) for w = xa.

0(1) for wis: If (A, w) = A, then w has no
consecutive 1's and does not end in 1.

0 Since 0(A, w) = A, 0(A, X) must be A or B,
and @ must be 0 (look at the DFA).

0 By the IH, x has no 11’s.

0 Thus, w has no 11’'s and does not end in 1.

30

0 AN /
Inductive Step — (3) 01

Start 0

0 Now, prove (2) for w = xa: If o(A, w) =
B, then w has no 11’s and ends in 1.

0 Since o(A, w) = B, d(A, x) must be A, and
a must be 1 (look at the DFA).

0By the IH, x has no 11's and does not end
in 1.

0 Thus, w has no 11's and ends in 1.

31

(nUp
Q)
()
()
(D
©
—t
(D
Q.
O
~<

O Contrapositive @ If W i

0 0’1 \ . .y -
;9 0 : contrapositive

Start 0 of “if X then Y” is the

equivalent statement
then w has 11. “if not Y then not X.”

32

Using the Contrapositive 0’1

Start 0

[0 Because there is a unigue transition
from every state on every input symbol,
each w gets the DFA to exactly one
state.

[0 The only way w is not accepted is if it
gets to C.

33

Using the Contrapositive
g Byl ﬁ 401
Start 0

[0 The only way to get to C [formally:
o(A,w) = C]is if w = x1y, x gets to B,
and y is the tail of w that follows what
gets to C for the first time.

0 If 8(A,x) = B then surely x = z1 for

some Z.
0Thus, w = z11y and has 11.

34

Reqgular Languages

0 A language L is regular if it is the
language accepted by some DFA.

[0 Note: the DFA must accept the strings
in L, no others.

[0 Some languages are not regular.

0 Intuitively, regular languages “cannot
count” to arbitrarily high integers.

35

. A Nonregular Language

L, ={0"1" | n = 1}
[0 Note: a' is conventional for i a’s.
0 Thus, 0% = 0000, e.qg.

[0 Read: "The set of strings consisting of n
0’s followed by n 1's, such that n is at
least 1.

0Thus, L, = {01, 0011, 000111,...}

36

Another

L, ={w | win {(,)}* and w is balanced }

[0 Balanced parentheses are those
sequences of parentheses that can
appear in an arithmetic expression.

0E.g.: (), Q0. (0), (00)---

37

But Many Languages are

Reqgular
[0 They appear in many contexts and have
many useful properties.

[. the strings that represent
floating point numbers in your favorite
language is a regular language.

38

. A Regular Language

L, ={w]|win{0,1}* and w, viewed as a
binary integer is divisible by 23}

[0 The DFA:
023 states, named O, 1,...,22.

0 Correspond to the 23 remainders of an
integer divided by 23.

[0 Start and only final state is 0.

39

Transitions of the DFA for L;

0 If string w represents integer i, then
assume 0(0, w) = i%23.

0 Then w0 represents integer 2i, so we
want 0(i%23, 0) = (2i)%?23.

0 Similarly: wl represents 2i+1, so we
want 0(i%?23, 1) = (2i+1)%?23.

i . 5(15,0) = 30%23 = 7:
5(11,1) = 23%23 = 0.

40

Another

L, ={w]|win{0,1}* and w, viewed as the
reverse of a binary integer is divisible by 23}

O : 01110100 is in L,, because its
reverse, 00101110 is 46 in binary.

[0 Hard to construct the DFA.

[0 But there is a theorem that says the reverse
of a regular language is also reqgular.

41

Nondeterministic Finite
Automata

Nondeterminism

Subset Construction
e-Transitions

42

Nondeterminism

0 A nondeterministic finite automaton
has the ability to be in several states at
once.

[0 Transitions from a state on an input
symbol can be to any set of states.

43

Nondeterminism — (2)

[1 Start in one start state.

[0 Accept if any sequence of choices leads
to a final state.

O Intuitively: the NFA always “guesses
right.”

44

: Moves on a
Chessboard

[1 States = squares.

0 Inputs = r (move to an adjacent red
square) and b (move to an adjacent
black square).

[0 Start state, final state are in opposite
corners.

45

Example: Chessboard — (2)

r b
—| 1124 5
2| 4,6 1,3,5
32,6 5
42,8 1,5,7
5124,6,8 1,3,7,9
62,8 3,5,9
r b / 4,8 5
84,6 5,7,9
x| 96,8 5

O NN W= Ul

< Accept, since final state reached

Formal NFA

A finite set of states, typically Q.

An input alphabet, typically 2.

A transition function, typically o.

A start state in Q, typically q,.
A set of final states F < Q.

47

Transition Function of an NFA

0(q, a) is a set of states.

Extend to strings as follows:
Basis: 0(q, €) = {q}

Induction: d(qg, wa) = the union over all

states p in (g, w) of d(p, a)

48

Language of an NFA

0 A string w is accepted by an NFA if
0(qy, W) contains at least one final

state.

[0 The language of the NFA is the set of
strings it accepts.

49

Fxample: Language
P guag o
of an NFA 0

00 For our chessboard NFA we saw that
rbb is accepted.

0 If the input consists of only b’s, the set
of accessible states alternates between
{5} and {1,3,7,9}, so only even-length,
nonempty strings of b’s are accepted.

[0 What about strings with at least one r?

50

Equivalence of DFA’s, NFA's

0 A DFA can be turned into an NFA that
accepts the same language.

0 If 05(q, @) = p, let the NFA have
d\(a, @) = {p}-

0 Then the NFA is always in a set
containing exactly one state — the state
the DFA is in after reading the same
input.

o1

Equivalence — (2)

0 Surprisingly, for any NFA there is a DFA

that acce
0 Proof is t

pts the same language.
ne subset construction.

0 The num

ner of states of the DFA can be

exponential in the number of states of

the NFA.

0 Thus, NFA's accept exactly the regular
languages.

52

Subset Construction

0 Given an NFA with states Q, inputs 2,
transition function o, state state q,, and

final states F, construct equivalent DFA
with:

States 22 (Set of subsets of Q).
Inputs 2.

Start state {q,}-
Final states = all those with a member of F.

53

0 The DFA states have that are
sets of NFA states.

[0 But as a DFA state, an expression like
{p,q} must be understood to be a single
symbol, not as a set.

[0 Analogy: a class of objects whose
values are sets of objects of another
class.

54

Subset Construction — (2)

0 The transition function oy is defined by:

o5({qy,...,qx}, @) is the union over all i =
1,...,.k of d\(q;, a).

[: We'll construct the DFA
equivalent of our “chessboard” NFA.

55

: Subset Construction

r b
1| 2,4 5
2| 4,6 1,3,5
3| 2,6 5
4| 2,8 1,5,7
5| 2,4,6,8 1,3,7,9
6| 2,8 3,5,9
71 4,8 5
81| 4,6 5,7,9
96,8 5

r b
— {1} {24y | {5}
{2,4}
{5}

Alert: What we're doing here is
the /azy form of DFA construction,
where we only construct a state

if we are forced to. 56

: Subset Construction

r b
1|24 5
21 4,6 1,3,5
3| 2,6 5
4| 2,8 1,5,7
5| 2,4,6,8 1,3,7,9
6| 2,8 3,5,9
71 4,8 5
81| 4,6 5,7,9
96,8 5

r b
— {1} {24y | {5}
{2I4} {2I4I6I8} {1I3I5I7}
{5}
{2I4I6I8}
{1,3,5,7}

S

: Subset Construction

r b
1|24 5
2| 4,6 1,3,5
3| 2,6 5
4| 2,8 1,5,7
51 2,4,6,8 1,3,7,9
6| 2,8 3,5,9
71 4,8 5
81| 4,6 5,7,9
96,8 5

r

b

— 1}
12,4}
15}
{2I4I6I8}
11,3,5,7}
* {1I3I7I9}

12,4}
{2I4I6I8}
{2I4I6I8}

15}
11,3,5,7}
{1I3I7I9}

58

: Subset Construction

r b
1|24 5
21 4,6 1,3,5
3| 2,6 5
4| 2,8 1,5,7
5| 2,4,6,8 1,3,7,9
6| 2,8 3,5,9
71 4,8 5
81 4,6 5,7,9
96,8 5

r

b

— 1}
12,4}
15}
{2I4I6I8}
11,3,5,7}
* {1I3I7I9}
* {1I3I5I7I9}

12,4}
{2I4I6I8}
{2I4I6I8}
{2I4I6l8}

15}
11,3,5,7}
{1I3I7I9}

{1I3I5I7I9}

59

: Subset Construction

r b
1| 2,4 5
2| 4,6 1,3,5
3| 2,6 5
4| 2,8 1,5,7
51 2,4,6,8 1,3,7,9
6| 2,8 3,5,9
71 4,8 5
81| 4,6 5,7,9
96,8 5

r b
— {1} {2,4y | {5}
{2I4} {2I4I6I8} {1I3I5I7}
{5 1{2,4,6,8} {1,3,7,9}
{2I4I6I8} {2I4I6I8} {1I3I5I7I9}
{1I315I7} {2I4I6I8} {1I3I5I7I9}

* {1I3I7I9}
* {1I3I5I7I9}

60

: Subset Construction

r b
1| 2,4 5
2| 4,6 1,3,5
3| 2,6 5
4| 2,8 1,5,7
5| 2,4,6,8 1,3,7,9
6| 2,8 3,5,9
71 4,8 5
81| 4,6 5,7,9
96,8 5

r b
— {1} {2,4y | {5}
{2I4} {2I4I6I8} {1I3I5I7}
{5 1{2,4,6,8} {1,3,7,9}
{2I4I6I8} {2I4I6I8} {1I3I5I7I9}
{1I315I7} {2I4I6I8} {1I3I5I7I9}
* {1,3,7,9} |{2,46,8} {5}

* {1I3I5I7I9}

61

: Subset Construction

r b
1| 2,4 5
2| 4,6 1,3,5
3| 2,6 5
4| 2,8 1,5,7
51 2,4,6,8 1,3,7,9
6| 2,8 3,5,9
71 4,8 5
81| 4,6 5,7,9
96,8 5

r

b

— 1}
12,4}
15}
{2I4I6I8}
11,3,5,7}
* {1I3I7I9}
* {1I3I5I7I9}

12,4}
{2I4I6I8}
{2I4I6I8}
{2I4I6l8}
{2I4I6l8}
{2I4I6l8}
{2I4I6I8}

15}
11,3,5,7}
{1I3I7I9}

{1I3I5I7I9}

{1I3I5I7I9}
15}

{1I3I5I719}

62

Proof of Equivalence: Subset
Construction

[0 The proof is almost a pun.
[0 Show by induction on |w| that

on(dor W) = 0p({dp}, W)
[0 Basis: w = €: oy(do, €) = 0p({dp}, €) =

{doJ-

63

Induction

Assume IH for strings shorter than w.

Let w = xa; IH holds for x.

Let o(qo, X) = 0p({dp}, X) = S.

Let T = the union over all states p in S of
on(p, a).

0 Then oy(qy, W) = op({qo}, W) = T.

64

NFA's With e-Transitions

[0 We can allow state-to-state transitions
on € input.

[0 These transitions are done
spontaneously, without looking at the
input string.

[0 A convenience at times, but still only
regular languages are accepted.

65

0 |1 |€
A {E} {B}| &
Bl & |{C}{D}
Clo |{D} @
D O | @@
E|{F} @|{B, C}
Fl {D} @| o

66

Closure of States

[0 CL(q) = set of states you can reach

from state g following only arcs labeled
€.

/E\.

0 . CL(A) = {A}; -®HC
CL(E)={B, C,D, E}. ~AL_€ & %
(E) ! LS
0 Closure of a set of states = union of the

closure of each state.

67

Extended Delta

0 Intuition: &(qg, w) is the set of states

you can reach from q following a path
labeled w.

0 Basis: 8(q, €) = CL(q).

0 Induction: d(q, xa) is computed by:
1. Start with 8(q, x) = S.
2. Take the union of CL(d(p, a)) for all p in S.

68

- ®
Extended Delta —® c

. 0 ~E
XA, €) = CL(A) = {A}. |
o(A, 0) = CL({E}) = {B, C, D, E}.
(A, 01) = CL({C, D}) = {C, D}.
Language of an €-NFA is the set of

strings w such that d(q,, w) contains a
final state.

3

@

69

Equivalence of NFA, e-NFA

[0 Every NFA is an e-NFA.
0 It just has no transitions on €.
[0 Converse requires us to take an e-NFA

and construct an NFA that accepts the
same language.

[0 We do so by combining e—transitions
with the next transition on a real input.

70

Picture of e-Transition Removal

We'll go
from here

*
*
3
4

Transitions
on €

. . To here

Transitions
on €

71

Equivalence — (2)

[0 Start with an e-NFA with states Q,
inputs 2, start state q,, final states F,
and transition function o¢.

0 Construct an “ordinary” NFA with states
Q, inputs 2, start state q,, final states

F, and transition function dy.

72

Equivalence — (3)

0 Compute dy(q, a) as follows:

1. Let S = CL(q).
2. 0p(q, a) is the union over all p in S of

6E(pl a)'
0 F = the set of states g such that
CL(qg) contains a state of F.

73

Equivalence — (4)

[0 Prove by induction on |w| that

CL(SN(qOI W)) = 6E(qu W)
0 Thus, the e-NFA accepts w if and only if

the “ordinary” NFA does.

74

0

: CL(B)
= {B,D}; CL(E)
= {B,C,D,E}

1

€

|

MmO ® >

*

{E}
%)
%,
%)
{F}
{D}

1B}

1C}

1D}
)
%)
)

€E-NFA

%
{D}
%
%

B, C}

%,

Since closures of
B and E include

/

final state D.

0

: €-NFA-
to-NFA

1

X
X

mm QOO >

1E}
%,
%
%

(F}

1B}
1C}
{D}

{D}

o
{C, D}

2N\

Doesn’t change,
since B, C, D
have no trans-
itions on 0.

Since closure of
E includes B and
C; which have
transitions on 1
to C and D. 75

Summary

[0 DFA's, NFA's, and e—NFA’s all accept

exactly the same set of languages: the
regular languages.

[0 The NFA types are easier to design and
may have exponentially fewer states
than a DFA.

[0 But only a DFA can be implemented!

76

