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Deterministic Finite Automata

Alphabets, Strings, and Languages

Transition Graphs and Tables

Some Proof Techniques
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Alphabets

An alphabet is any finite set of 
symbols.

Examples:

ASCII, Unicode,

{0,1} (binary alphabet ),

{a,b,c}, {s,o},

set of signals used by a protocol.
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Strings

A string over an alphabet Σ is a list, each 
element of which is a member of Σ.

Strings shown with no commas or quotes, 
e.g., abc or 01101.

Σ* = set of all strings over alphabet Σ.

The length of a string is its number of 
positions.

ε stands for the empty string (string of 

length 0).
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Example: Strings

{0,1}* = {ε, 0, 1, 00, 01, 10, 11, 000, 

001, . . . }

Subtlety: 0 as a string, 0 as a symbol 
look the same.

Context determines the type.
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Languages

A language is a subset of Σ* for some 
alphabet Σ.

Example: The set of strings of 0’s and 
1’s with no two consecutive 1’s.

L = {ε, 0, 1, 00, 01, 10, 000, 001, 010, 

100, 101, 0000, 0001, 0010, 0100, 
0101, 1000, 1001, 1010, . . . }

Hmm… 1 of length 0, 2 of length 1, 3, of length 2, 5 of length
3, 8 of length 4.  I wonder how many of length 5?
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Deterministic Finite Automata

A formalism for defining languages, 
consisting of:

1. A finite set of states (Q, typically).

2. An input alphabet (Σ, typically).

3. A transition function (δ, typically).

4. A start state (q0, in Q, typically).

5. A set of final states (F ⊆ Q, typically).

“Final” and “accepting” are synonyms.
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The Transition Function

Takes two arguments: a state and an 
input symbol.

δ(q, a) = the state that the DFA goes to 

when it is in state q and input a is 
received.

Note: always a next state – add a dead 
state if no transition (Example on next 
slide).
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Graph Representation of DFA’s 

Nodes = states.

Arcs represent transition function.

Arc from state p to state q labeled by all 
those input symbols that have transitions 
from p to q.

Arrow labeled “Start” to the start state.

Final states indicated by double circles.
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Example: Recognizing Strings 
Ending in “ing”

nothing Saw i
i

Not i

Saw ing
g

i

Not i or g

Saw in
n

i

Not i or n

Start i

Not i
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Example: Protocol for Sending 
Data

Ready Sending

data in

ack

timeout

Start
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Example: Strings With No 11

Start

1

0

A CB
1

0 0,1

String so far
has no 11,
does not
end in 1.

String so far
has no 11,
but ends in
a  single 1.

Consecutive
1’s have
been seen.
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Alternative Representation: 
Transition Table

0 1

A A B
B A C
C C C

Rows = states

Columns =
input symbols

Final states
starred

*

*Arrow for
start state

Start

1

0

A CB 1

0 0,1

Each entry is δ

of the row and
column.
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Convention: Strings and Symbols

… w, x, y, z are strings.

a, b, c,… are single input symbols.
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Extended Transition Function

We describe the effect of a string of 
inputs on a DFA by extending δ to a 

state and a string.

Intuition: Extended δ is computed for 

state q and inputs a1a2…an by following 
a path in the transition graph, starting 
at q and selecting the arcs with labels 
a1, a2,…, an in turn.
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Inductive Definition of 
Extended δ

Induction on length of string.

Basis: δ(q, ε) = q

Induction: δ(q,wa) = δ(δ(q,w),a)

Remember: w is a string; a is an input 
symbol, by convention.
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Example: Extended Delta

0 1

A A B
B A C
C C C

δ(B,011) = δ(δ(B,01),1) = δ(δ(δ(B,0),1),1) =

δ(δ(A,1),1) = δ(B,1) = C
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Delta-hat

We don’t distinguish between the given 
delta and the extended delta or delta-
hat.

The reason:

δ(q, a) = δ(δ(q, ε), a) = δ(q, a)
˄˄

Extended deltas
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Language of a DFA

Automata of all kinds define languages.

If A is an automaton, L(A) is its 
language.

For a DFA A, L(A) is the set of strings 
labeling paths from the start state to a 
final state.

Formally: L(A) = the set of strings w 
such that δ(q0, w) is in F.
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Example: String in a Language

Start

1

0

A CB
1

0 0,1

String 101 is in the language of the DFA below.
Start at A.
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Example: String in a Language

Start

1

0

A CB
1

0 0,1

Follow arc labeled 1.

String 101 is in the language of the DFA below.
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Example: String in a Language

Start

1

0

A CB
1

0 0,1

Then arc labeled 0 from current state B.

String 101 is in the language of the DFA below.
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Example: String in a Language

Start

1

0

A CB
1

0 0,1

Finally arc labeled 1 from current state A.  Result
is an accepting state, so 101 is in the language.

String 101 is in the language of the DFA below.
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Example – Concluded

The language of our example DFA is:

{w | w is in {0,1}* and w does not have

two consecutive 1’s}

Read a set former as
“The set of strings w…

Such that…
These conditions
about w are true.
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Proofs of Set Equivalence

Often, we need to prove that two 
descriptions of sets are in fact the same 
set.

Here, one set is “the language of this 
DFA,” and the other is “the set of 
strings of 0’s and 1’s with no 
consecutive 1’s.”



26

Proofs – (2)

In general, to prove S = T, we need to 
prove two parts: S ⊆ T and T ⊆ S.  

That is:

1. If w is in S, then w is in T.

2. If w is in T, then w is in S.

Here, S = the language of our running 
DFA, and T = “no consecutive 1’s.”
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Part 1: S ⊆ T

To prove: if w is accepted by

then w has no consecutive 1’s.

Proof is an induction on length of w.

Important trick: Expand the inductive 
hypothesis to be more detailed than the 
statement you are trying to prove.

Start

1

0

A CB 1
0 0,1
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The Inductive Hypothesis

1. If δ(A, w) = A, then w has no 

consecutive 1’s and does not end in 1.

2. If δ(A, w) = B, then w has no 

consecutive 1’s and ends in a single 1.

Basis: |w| = 0; i.e., w = ε.

(1) holds since ε has no 1’s at all.

(2) holds vacuously, since δ(A, ε) is not B.

“length of”
Important concept:
If the “if” part of “if..then” is false,
the statement is true.
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Inductive Step

Assume (1) and (2) are true for strings 
shorter than w, where |w| is at least 1.

Because w is not empty, we can write w 
= xa, where a is the last symbol of w, 
and x is the string that precedes.

IH is true for x.

Start

1

0

A CB 1
0 0,1
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Inductive Step – (2)

Need to prove (1) and (2) for w = xa.

(1) for w is: If δ(A, w) = A, then w has no 

consecutive 1’s and does not end in 1.

Since δ(A, w) = A, δ(A, x) must be A or B, 

and a must be 0 (look at the DFA).

By the IH, x has no 11’s.

Thus, w has no 11’s and does not end in 1.

Start

1

0

A CB 1
0 0,1
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Inductive Step – (3)

Now, prove (2) for w = xa: If δ(A, w) = 

B, then w has no 11’s and ends in 1.

Since δ(A, w) = B, δ(A, x) must be A, and 

a must be 1 (look at the DFA).

By the IH, x has no 11’s and does not end 
in 1.

Thus, w has no 11’s and ends in 1.

Start

1

0

A CB 1
0 0,1
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Part 2: T ⊆ S

Now, we must prove: if w has no 11’s, 
then w is accepted by

Contrapositive : If w is not accepted by

then w has 11.

Start

1

0

A CB 1
0 0,1

Start

1

0

A CB 1
0 0,1

Key idea: contrapositive
of “if X then Y” is the
equivalent statement
“if not Y then not X.”

X

Y
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Using the Contrapositive

Because there is a unique transition 
from every state on every input symbol, 
each w gets the DFA to exactly one 
state.

The only way w is not accepted is if it 
gets to C. 

Start

1

0

A CB 1
0 0,1
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Using the Contrapositive 
– (2)

The only way to get to C [formally: 
δ(A,w) = C] is if w = x1y, x gets to B, 

and y is the tail of w that follows what 
gets to C for the first time.

If δ(A,x) = B then surely x = z1 for 

some z.

Thus, w = z11y and has 11.

Start

1

0

A CB 1
0 0,1
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Regular Languages

A language L is regular if it is the 
language accepted by some DFA.

Note: the DFA must accept only the strings 
in L, no others.

Some languages are not regular.

Intuitively, regular languages “cannot 
count” to arbitrarily high integers.
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Example: A Nonregular Language

L1 = {0n1n | n ≥ 1}

Note: ai is conventional for i a’s.

Thus, 04 = 0000, e.g.

Read: “The set of strings consisting of n 
0’s followed by n 1’s, such that n is at 
least 1.

Thus, L1 = {01, 0011, 000111,…}
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Another Example

L2 = {w | w in {(, )}* and w is balanced }

Balanced parentheses are those 
sequences of parentheses that can 
appear in an arithmetic expression.

E.g.: (), ()(), (()), (()()),…
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But Many Languages are 
Regular

They appear in many contexts and have 
many useful properties.

Example: the strings that represent 
floating point numbers in your favorite 
language is a regular language.
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Example: A Regular Language

L3 = { w | w in {0,1}* and w, viewed as a 
binary integer is divisible by 23}

The DFA:

23 states, named 0, 1,…,22.

Correspond to the 23 remainders of an 
integer divided by 23.

Start and only final state is 0.
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Transitions of the DFA for L3

If string w represents integer i, then 
assume δ(0, w) = i%23.

Then w0 represents integer 2i, so we 
want δ(i%23, 0) = (2i)%23.

Similarly: w1 represents 2i+1, so we 
want δ(i%23, 1) = (2i+1)%23.

Example: δ(15,0) = 30%23 = 7; 
δ(11,1) = 23%23 = 0.
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Another Example

L4 = { w | w in {0,1}* and w, viewed as the 
reverse of a binary integer is divisible by 23}

Example: 01110100 is in L4, because its 
reverse, 00101110 is 46 in binary.

Hard to construct the DFA.

But there is a theorem that says the reverse 
of a regular language is also regular.
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Nondeterministic Finite 
Automata

Nondeterminism

Subset Construction

ε-Transitions
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Nondeterminism

A nondeterministic finite automaton
has the ability to be in several states at 
once.

Transitions from a state on an input 
symbol can be to any set of states.
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Nondeterminism – (2)

Start in one start state.

Accept if any sequence of choices leads 
to a final state.

Intuitively: the NFA always “guesses 
right.”
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Example: Moves on a 
Chessboard

States = squares.

Inputs = r (move to an adjacent red 
square) and b (move to an adjacent 
black square).

Start state, final state are in opposite 
corners.
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Example: Chessboard – (2)

1 2

5

7 9

3

4

8

6

1

r b b

4

2 1

5

3

7

5

1

3

9

7

r         b
1 2,4       5
2 4,6       1,3,5
3 2,6       5
4 2,8       1,5,7
5 2,4,6,8  1,3,7,9
6 2,8        3,5,9
7 4,8        5
8 4,6        5,7,9
9 6,8        5*

Accept, since final state reached
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Formal NFA

A finite set of states, typically Q.

An input alphabet, typically Σ.

A transition function, typically δ.

A start state in Q, typically q0.

A set of final states F ⊆ Q.



48

Transition Function of an NFA

δ(q, a) is a set of states.

Extend to strings as follows:

Basis: δ(q, ε) = {q}

Induction: δ(q, wa) = the union over all 
states p in δ(q, w) of δ(p, a)
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Language of an NFA

A string w is accepted by an NFA if 
δ(q0, w) contains at least one final 

state.

The language of the NFA is the set of 
strings it accepts.
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Example: Language 
of an NFA

For our chessboard NFA we saw that 
rbb is accepted.

If the input consists of only b’s, the set 
of accessible states alternates between 
{5} and {1,3,7,9}, so only even-length, 
nonempty strings of b’s are accepted.

What about strings with at least one r?

1 2

5

7 9

3

4

8

6
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Equivalence of DFA’s, NFA’s

A DFA can be turned into an NFA that 
accepts the same language.

If δD(q, a) = p, let the NFA have    
δN(q, a) = {p}.

Then the NFA is always in a set 
containing exactly one state – the state 
the DFA is in after reading the same 
input. 
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Equivalence – (2)

Surprisingly, for any NFA there is a DFA 
that accepts the same language.

Proof is the subset construction.

The number of states of the DFA can be 
exponential in the number of states of 
the NFA.

Thus, NFA’s accept exactly the regular 
languages.



53

Subset Construction

Given an NFA with states Q, inputs Σ, 
transition function δN, state state q0, and 

final states F, construct equivalent DFA 
with:

States 2Q (Set of subsets of Q).

Inputs Σ.

Start state {q0}.

Final states = all those with a member of F.
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Critical Point

The DFA states have names that are 
sets of NFA states.

But as a DFA state, an expression like 
{p,q} must be understood to be a single 
symbol, not as a set.

Analogy: a class of objects whose 
values are sets of objects of another 
class.
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Subset Construction – (2)

The transition function δD is defined by:

δD({q1,…,qk}, a) is the union over all i = 
1,…,k  of δN(qi, a).

Example: We’ll construct the DFA 
equivalent of our “chessboard” NFA.
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Example: Subset Construction

r         b
1 2,4       5
2 4,6       1,3,5
3 2,6       5
4 2,8       1,5,7
5 2,4,6,8  1,3,7,9
6 2,8        3,5,9
7 4,8        5
8 4,6        5,7,9
9 6,8        5*

r b

{1} {2,4}       {5}

{2,4}

{5}

Alert: What we’re doing here is
the lazy form of DFA construction,
where we only construct a state
if we are forced to.
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Example: Subset Construction

r         b
1 2,4       5
2 4,6       1,3,5
3 2,6       5
4 2,8       1,5,7
5 2,4,6,8  1,3,7,9
6 2,8        3,5,9
7 4,8        5
8 4,6        5,7,9
9 6,8        5*

r b

{1}

{2,4,6,8}

{5}

{2,4} {2,4,6,8}  {1,3,5,7}

{1,3,5,7}

{2,4}       {5}
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Example: Subset Construction

r         b
1 2,4       5
2 4,6       1,3,5
3 2,6       5
4 2,8       1,5,7
5 2,4,6,8  1,3,7,9
6 2,8        3,5,9
7 4,8        5
8 4,6        5,7,9
9 6,8        5*

r b

{1}

*   {1,3,7,9}

{2,4,6,8}

{2,4,6,8}  {1,3,7,9}{5}

{2,4} {2,4,6,8}  {1,3,5,7}

{1,3,5,7}

{2,4}       {5}
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Example: Subset Construction

r         b
1 2,4       5
2 4,6       1,3,5
3 2,6       5
4 2,8       1,5,7
5 2,4,6,8  1,3,7,9
6 2,8        3,5,9
7 4,8        5
8 4,6        5,7,9
9 6,8        5*

r b

{1}

* {1,3,5,7,9}

*   {1,3,7,9}

{2,4,6,8} {1,3,5,7,9}{2,4,6,8}

{2,4,6,8}  {1,3,7,9}{5}

{2,4} {2,4,6,8}  {1,3,5,7}

{1,3,5,7}

{2,4}       {5}
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Example: Subset Construction

r         b
1 2,4       5
2 4,6       1,3,5
3 2,6       5
4 2,8       1,5,7
5 2,4,6,8  1,3,7,9
6 2,8        3,5,9
7 4,8        5
8 4,6        5,7,9
9 6,8        5*

r b

{1}

* {1,3,5,7,9}

*   {1,3,7,9}

{2,4,6,8} {1,3,5,7,9}{2,4,6,8}

{2,4,6,8}  {1,3,7,9}{5}

{2,4} {2,4,6,8}  {1,3,5,7}

{1,3,5,7}

{2,4}       {5}

{2,4,6,8} {1,3,5,7,9}
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Example: Subset Construction

r         b
1 2,4       5
2 4,6       1,3,5
3 2,6       5
4 2,8       1,5,7
5 2,4,6,8  1,3,7,9
6 2,8        3,5,9
7 4,8        5
8 4,6        5,7,9
9 6,8        5*

r b

{1}

* {1,3,5,7,9}

*   {1,3,7,9} {2,4,6,8}     {5}

{2,4,6,8} {1,3,5,7,9}{2,4,6,8}

{2,4,6,8}  {1,3,7,9}{5}

{2,4} {2,4,6,8}  {1,3,5,7}

{1,3,5,7}

{2,4}       {5}

{2,4,6,8} {1,3,5,7,9}
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Example: Subset Construction

r         b
1 2,4       5
2 4,6       1,3,5
3 2,6       5
4 2,8       1,5,7
5 2,4,6,8  1,3,7,9
6 2,8        3,5,9
7 4,8        5
8 4,6        5,7,9
9 6,8        5*

r b

{1}

* {1,3,5,7,9} {2,4,6,8} {1,3,5,7,9}

*   {1,3,7,9} {2,4,6,8}     {5}

{2,4,6,8} {1,3,5,7,9}{2,4,6,8}

{2,4,6,8}  {1,3,7,9}{5}

{2,4} {2,4,6,8}  {1,3,5,7}

{1,3,5,7}

{2,4}       {5}

{2,4,6,8} {1,3,5,7,9}
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Proof of Equivalence: Subset 
Construction

The proof is almost a pun.

Show by induction on |w| that

δN(q0, w) = δD({q0}, w)

Basis: w = ε: δN(q0, ε) = δD({q0}, ε) = 

{q0}.
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Induction

Assume IH for strings shorter than w.

Let w = xa; IH holds for x.

Let δN(q0, x) = δD({q0}, x) = S.

Let T = the union over all states p in S of 
δN(p, a).

Then δN(q0, w) = δD({q0}, w) = T.
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NFA’s With ε-Transitions

We can allow state-to-state transitions 
on ε input.

These transitions are done 
spontaneously, without looking at the 
input string.

A convenience at times, but still only 
regular languages are accepted.
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Example: ε-NFA

C

E F

A

B D1
1 1

0

0

0

ε

ε ε

0     1     ε
A  {E}  {B}  ∅
B   ∅ {C} {D}
C   ∅   {D}  ∅
D   ∅    ∅   ∅
E   {F}   ∅ {B, C}
F   {D}   ∅  ∅

*
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Closure of States

CL(q) = set of states you can reach 
from state q following only arcs labeled 
ε.

Example: CL(A) = {A};

CL(E) = {B, C, D, E}.

Closure of a set of states = union of the 
closure of each state. 

C

E F

A

B D1
1 1

0
0

0

ε

ε ε
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Extended Delta

Intuition:   (q, w) is the set of states 
you can reach from q following a path 
labeled w.

Basis:   (q, ε) = CL(q).

Induction:   (q, xa) is computed by:

1. Start with   (q, x) = S.

2. Take the union of CL(δ(p, a)) for all p in S.

˄
δ

˄
δ

˄
δ

˄
δ
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Example: 
Extended Delta

(A, ε) = CL(A) = {A}.

(A, 0) = CL({E}) = {B, C, D, E}.

(A, 01) = CL({C, D}) = {C, D}.

Language of an ε-NFA is the set of 

strings w such that   (q0, w) contains a 
final state.

C

E F

A

B D1
1 1

0
0

0

ε

ε ε
˄
δ
˄
δ
˄
δ

˄
δ
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Equivalence of NFA, ε-NFA

Every NFA is an ε-NFA.

It just has no transitions on ε.

Converse requires us to take an ε-NFA 

and construct an NFA that accepts the 
same language.

We do so by combining ε–transitions 

with the next transition on a real input.
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Picture of ε-Transition Removal

Transitions
on ε

a

a

a

Transitions
on ε

We’ll go
from here

To here
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Equivalence – (2)

Start with an ε-NFA with states Q, 
inputs Σ, start state q0, final states F, 
and transition function δE.

Construct an “ordinary” NFA with states 
Q, inputs Σ, start state q0, final states 
F’, and transition function δN.



73

Equivalence – (3)

Compute δN(q, a) as follows:

1. Let S = CL(q).

2. δN(q, a) is the union over all p in S of 
δE(p, a).

F’ = the set of states q such that 
CL(q) contains a state of F.
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Equivalence – (4)

Prove by induction on |w| that

CL(δN(q0, w)) =   E(q0, w).

Thus, the ε-NFA accepts w if and only if 

the “ordinary” NFA does.

˄
δ
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Example: ε-NFA-

to-NFA

0     1     ε
A  {E}  {B}  ∅
B   ∅ {C} {D}
C   ∅   {D}  ∅
D   ∅    ∅   ∅
E   {F}   ∅ {B, C}
F   {D}   ∅  ∅

*

ε-NFA

*

*

*

Since closure of
E includes B and
C; which have
transitions on 1
to C and D.

Since closures of
B and E include
final state D.

Interesting
closures: CL(B)
= {B,D}; CL(E)
= {B,C,D,E}

0     1
A  {E}  {B}
B   ∅ {C}
C   ∅   {D}
D   ∅    ∅

E   {F}  {C, D}
F   {D}   ∅

Doesn’t change,
since B, C, D
have no trans-
itions on 0.
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Summary

DFA’s, NFA’s, and ε–NFA’s all accept 

exactly the same set of languages: the 
regular languages.

The NFA types are easier to design and 
may have exponentially fewer states 
than a DFA.

But only a DFA can be implemented!


