
1

Deterministic Finite Automata

Alphabets, Strings, and Languages

Transition Graphs and Tables

Some Proof Techniques

2

Alphabets

An alphabet is any finite set of
symbols.

Examples:

ASCII, Unicode,

{0,1} (binary alphabet),

{a,b,c}, {s,o},

set of signals used by a protocol.

3

Strings

A string over an alphabet Σ is a list, each
element of which is a member of Σ.

Strings shown with no commas or quotes,
e.g., abc or 01101.

Σ* = set of all strings over alphabet Σ.

The length of a string is its number of
positions.

ε stands for the empty string (string of

length 0).

4

Example: Strings

{0,1}* = {ε, 0, 1, 00, 01, 10, 11, 000,

001, . . . }

Subtlety: 0 as a string, 0 as a symbol
look the same.

Context determines the type.

5

Languages

A language is a subset of Σ* for some
alphabet Σ.

Example: The set of strings of 0’s and
1’s with no two consecutive 1’s.

L = {ε, 0, 1, 00, 01, 10, 000, 001, 010,

100, 101, 0000, 0001, 0010, 0100,
0101, 1000, 1001, 1010, . . . }

Hmm… 1 of length 0, 2 of length 1, 3, of length 2, 5 of length
3, 8 of length 4. I wonder how many of length 5?

6

Deterministic Finite Automata

A formalism for defining languages,
consisting of:

1. A finite set of states (Q, typically).

2. An input alphabet (Σ, typically).

3. A transition function (δ, typically).

4. A start state (q0, in Q, typically).

5. A set of final states (F ⊆ Q, typically).

“Final” and “accepting” are synonyms.

7

The Transition Function

Takes two arguments: a state and an
input symbol.

δ(q, a) = the state that the DFA goes to

when it is in state q and input a is
received.

Note: always a next state – add a dead
state if no transition (Example on next
slide).

8

Love

Start

Love-15

15-Love
s

o

Love-30

15-all

30-Love

s

s

o

o

Love-40

15-30

30-15

40-Love

s

s

s

o

o

o

Server
Wins

Opp’nt
Wins

s

o

40-15

15-40

30-all

s

s

s

o

o

o

30-40

40-30

s

s

s

o

o

o

deuce
s

s

o

o
Ad-out

Ad-in

s

o
s

o

s

o

Dead

s, o

s, os, o

9

Graph Representation of DFA’s

Nodes = states.

Arcs represent transition function.

Arc from state p to state q labeled by all
those input symbols that have transitions
from p to q.

Arrow labeled “Start” to the start state.

Final states indicated by double circles.

10

Example: Recognizing Strings
Ending in “ing”

nothing Saw i
i

Not i

Saw ing
g

i

Not i or g

Saw in
n

i

Not i or n

Start i

Not i

11

Example: Protocol for Sending
Data

Ready Sending

data in

ack

timeout

Start

12

Example: Strings With No 11

Start

1

0

A CB
1

0 0,1

String so far
has no 11,
does not
end in 1.

String so far
has no 11,
but ends in
a single 1.

Consecutive
1’s have
been seen.

13

Alternative Representation:
Transition Table

0 1

A A B
B A C
C C C

Rows = states

Columns =
input symbols

Final states
starred

*

*Arrow for
start state

Start

1

0

A CB 1

0 0,1

Each entry is δ

of the row and
column.

14

Convention: Strings and Symbols

… w, x, y, z are strings.

a, b, c,… are single input symbols.

15

Extended Transition Function

We describe the effect of a string of
inputs on a DFA by extending δ to a

state and a string.

Intuition: Extended δ is computed for

state q and inputs a1a2…an by following
a path in the transition graph, starting
at q and selecting the arcs with labels
a1, a2,…, an in turn.

16

Inductive Definition of
Extended δ

Induction on length of string.

Basis: δ(q, ε) = q

Induction: δ(q,wa) = δ(δ(q,w),a)

Remember: w is a string; a is an input
symbol, by convention.

17

Example: Extended Delta

0 1

A A B
B A C
C C C

δ(B,011) = δ(δ(B,01),1) = δ(δ(δ(B,0),1),1) =

δ(δ(A,1),1) = δ(B,1) = C

18

Delta-hat

We don’t distinguish between the given
delta and the extended delta or delta-
hat.

The reason:

δ(q, a) = δ(δ(q, ε), a) = δ(q, a)
˄˄

Extended deltas

19

Language of a DFA

Automata of all kinds define languages.

If A is an automaton, L(A) is its
language.

For a DFA A, L(A) is the set of strings
labeling paths from the start state to a
final state.

Formally: L(A) = the set of strings w
such that δ(q0, w) is in F.

20

Example: String in a Language

Start

1

0

A CB
1

0 0,1

String 101 is in the language of the DFA below.
Start at A.

21

Example: String in a Language

Start

1

0

A CB
1

0 0,1

Follow arc labeled 1.

String 101 is in the language of the DFA below.

22

Example: String in a Language

Start

1

0

A CB
1

0 0,1

Then arc labeled 0 from current state B.

String 101 is in the language of the DFA below.

23

Example: String in a Language

Start

1

0

A CB
1

0 0,1

Finally arc labeled 1 from current state A. Result
is an accepting state, so 101 is in the language.

String 101 is in the language of the DFA below.

24

Example – Concluded

The language of our example DFA is:

{w | w is in {0,1}* and w does not have

two consecutive 1’s}

Read a set former as
“The set of strings w…

Such that…
These conditions
about w are true.

25

Proofs of Set Equivalence

Often, we need to prove that two
descriptions of sets are in fact the same
set.

Here, one set is “the language of this
DFA,” and the other is “the set of
strings of 0’s and 1’s with no
consecutive 1’s.”

26

Proofs – (2)

In general, to prove S = T, we need to
prove two parts: S ⊆ T and T ⊆ S.

That is:

1. If w is in S, then w is in T.

2. If w is in T, then w is in S.

Here, S = the language of our running
DFA, and T = “no consecutive 1’s.”

27

Part 1: S ⊆ T

To prove: if w is accepted by

then w has no consecutive 1’s.

Proof is an induction on length of w.

Important trick: Expand the inductive
hypothesis to be more detailed than the
statement you are trying to prove.

Start

1

0

A CB 1
0 0,1

28

The Inductive Hypothesis

1. If δ(A, w) = A, then w has no

consecutive 1’s and does not end in 1.

2. If δ(A, w) = B, then w has no

consecutive 1’s and ends in a single 1.

Basis: |w| = 0; i.e., w = ε.

(1) holds since ε has no 1’s at all.

(2) holds vacuously, since δ(A, ε) is not B.

“length of”
Important concept:
If the “if” part of “if..then” is false,
the statement is true.

29

Inductive Step

Assume (1) and (2) are true for strings
shorter than w, where |w| is at least 1.

Because w is not empty, we can write w
= xa, where a is the last symbol of w,
and x is the string that precedes.

IH is true for x.

Start

1

0

A CB 1
0 0,1

30

Inductive Step – (2)

Need to prove (1) and (2) for w = xa.

(1) for w is: If δ(A, w) = A, then w has no

consecutive 1’s and does not end in 1.

Since δ(A, w) = A, δ(A, x) must be A or B,

and a must be 0 (look at the DFA).

By the IH, x has no 11’s.

Thus, w has no 11’s and does not end in 1.

Start

1

0

A CB 1
0 0,1

31

Inductive Step – (3)

Now, prove (2) for w = xa: If δ(A, w) =

B, then w has no 11’s and ends in 1.

Since δ(A, w) = B, δ(A, x) must be A, and

a must be 1 (look at the DFA).

By the IH, x has no 11’s and does not end
in 1.

Thus, w has no 11’s and ends in 1.

Start

1

0

A CB 1
0 0,1

32

Part 2: T ⊆ S

Now, we must prove: if w has no 11’s,
then w is accepted by

Contrapositive : If w is not accepted by

then w has 11.

Start

1

0

A CB 1
0 0,1

Start

1

0

A CB 1
0 0,1

Key idea: contrapositive
of “if X then Y” is the
equivalent statement
“if not Y then not X.”

X

Y

33

Using the Contrapositive

Because there is a unique transition
from every state on every input symbol,
each w gets the DFA to exactly one
state.

The only way w is not accepted is if it
gets to C.

Start

1

0

A CB 1
0 0,1

34

Using the Contrapositive
– (2)

The only way to get to C [formally:
δ(A,w) = C] is if w = x1y, x gets to B,

and y is the tail of w that follows what
gets to C for the first time.

If δ(A,x) = B then surely x = z1 for

some z.

Thus, w = z11y and has 11.

Start

1

0

A CB 1
0 0,1

35

Regular Languages

A language L is regular if it is the
language accepted by some DFA.

Note: the DFA must accept only the strings
in L, no others.

Some languages are not regular.

Intuitively, regular languages “cannot
count” to arbitrarily high integers.

36

Example: A Nonregular Language

L1 = {0n1n | n ≥ 1}

Note: ai is conventional for i a’s.

Thus, 04 = 0000, e.g.

Read: “The set of strings consisting of n
0’s followed by n 1’s, such that n is at
least 1.

Thus, L1 = {01, 0011, 000111,…}

37

Another Example

L2 = {w | w in {(,)}* and w is balanced }

Balanced parentheses are those
sequences of parentheses that can
appear in an arithmetic expression.

E.g.: (), ()(), (()), (()()),…

38

But Many Languages are
Regular

They appear in many contexts and have
many useful properties.

Example: the strings that represent
floating point numbers in your favorite
language is a regular language.

39

Example: A Regular Language

L3 = { w | w in {0,1}* and w, viewed as a
binary integer is divisible by 23}

The DFA:

23 states, named 0, 1,…,22.

Correspond to the 23 remainders of an
integer divided by 23.

Start and only final state is 0.

40

Transitions of the DFA for L3

If string w represents integer i, then
assume δ(0, w) = i%23.

Then w0 represents integer 2i, so we
want δ(i%23, 0) = (2i)%23.

Similarly: w1 represents 2i+1, so we
want δ(i%23, 1) = (2i+1)%23.

Example: δ(15,0) = 30%23 = 7;
δ(11,1) = 23%23 = 0.

41

Another Example

L4 = { w | w in {0,1}* and w, viewed as the
reverse of a binary integer is divisible by 23}

Example: 01110100 is in L4, because its
reverse, 00101110 is 46 in binary.

Hard to construct the DFA.

But there is a theorem that says the reverse
of a regular language is also regular.

42

Nondeterministic Finite
Automata

Nondeterminism

Subset Construction

ε-Transitions

43

Nondeterminism

A nondeterministic finite automaton
has the ability to be in several states at
once.

Transitions from a state on an input
symbol can be to any set of states.

44

Nondeterminism – (2)

Start in one start state.

Accept if any sequence of choices leads
to a final state.

Intuitively: the NFA always “guesses
right.”

45

Example: Moves on a
Chessboard

States = squares.

Inputs = r (move to an adjacent red
square) and b (move to an adjacent
black square).

Start state, final state are in opposite
corners.

46

Example: Chessboard – (2)

1 2

5

7 9

3

4

8

6

1

r b b

4

2 1

5

3

7

5

1

3

9

7

r b
1 2,4 5
2 4,6 1,3,5
3 2,6 5
4 2,8 1,5,7
5 2,4,6,8 1,3,7,9
6 2,8 3,5,9
7 4,8 5
8 4,6 5,7,9
9 6,8 5*

Accept, since final state reached

47

Formal NFA

A finite set of states, typically Q.

An input alphabet, typically Σ.

A transition function, typically δ.

A start state in Q, typically q0.

A set of final states F ⊆ Q.

48

Transition Function of an NFA

δ(q, a) is a set of states.

Extend to strings as follows:

Basis: δ(q, ε) = {q}

Induction: δ(q, wa) = the union over all
states p in δ(q, w) of δ(p, a)

49

Language of an NFA

A string w is accepted by an NFA if
δ(q0, w) contains at least one final

state.

The language of the NFA is the set of
strings it accepts.

50

Example: Language
of an NFA

For our chessboard NFA we saw that
rbb is accepted.

If the input consists of only b’s, the set
of accessible states alternates between
{5} and {1,3,7,9}, so only even-length,
nonempty strings of b’s are accepted.

What about strings with at least one r?

1 2

5

7 9

3

4

8

6

51

Equivalence of DFA’s, NFA’s

A DFA can be turned into an NFA that
accepts the same language.

If δD(q, a) = p, let the NFA have
δN(q, a) = {p}.

Then the NFA is always in a set
containing exactly one state – the state
the DFA is in after reading the same
input.

52

Equivalence – (2)

Surprisingly, for any NFA there is a DFA
that accepts the same language.

Proof is the subset construction.

The number of states of the DFA can be
exponential in the number of states of
the NFA.

Thus, NFA’s accept exactly the regular
languages.

53

Subset Construction

Given an NFA with states Q, inputs Σ,
transition function δN, state state q0, and

final states F, construct equivalent DFA
with:

States 2Q (Set of subsets of Q).

Inputs Σ.

Start state {q0}.

Final states = all those with a member of F.

54

Critical Point

The DFA states have names that are
sets of NFA states.

But as a DFA state, an expression like
{p,q} must be understood to be a single
symbol, not as a set.

Analogy: a class of objects whose
values are sets of objects of another
class.

55

Subset Construction – (2)

The transition function δD is defined by:

δD({q1,…,qk}, a) is the union over all i =
1,…,k of δN(qi, a).

Example: We’ll construct the DFA
equivalent of our “chessboard” NFA.

56

Example: Subset Construction

r b
1 2,4 5
2 4,6 1,3,5
3 2,6 5
4 2,8 1,5,7
5 2,4,6,8 1,3,7,9
6 2,8 3,5,9
7 4,8 5
8 4,6 5,7,9
9 6,8 5*

r b

{1} {2,4} {5}

{2,4}

{5}

Alert: What we’re doing here is
the lazy form of DFA construction,
where we only construct a state
if we are forced to.

57

Example: Subset Construction

r b
1 2,4 5
2 4,6 1,3,5
3 2,6 5
4 2,8 1,5,7
5 2,4,6,8 1,3,7,9
6 2,8 3,5,9
7 4,8 5
8 4,6 5,7,9
9 6,8 5*

r b

{1}

{2,4,6,8}

{5}

{2,4} {2,4,6,8} {1,3,5,7}

{1,3,5,7}

{2,4} {5}

58

Example: Subset Construction

r b
1 2,4 5
2 4,6 1,3,5
3 2,6 5
4 2,8 1,5,7
5 2,4,6,8 1,3,7,9
6 2,8 3,5,9
7 4,8 5
8 4,6 5,7,9
9 6,8 5*

r b

{1}

* {1,3,7,9}

{2,4,6,8}

{2,4,6,8} {1,3,7,9}{5}

{2,4} {2,4,6,8} {1,3,5,7}

{1,3,5,7}

{2,4} {5}

59

Example: Subset Construction

r b
1 2,4 5
2 4,6 1,3,5
3 2,6 5
4 2,8 1,5,7
5 2,4,6,8 1,3,7,9
6 2,8 3,5,9
7 4,8 5
8 4,6 5,7,9
9 6,8 5*

r b

{1}

* {1,3,5,7,9}

* {1,3,7,9}

{2,4,6,8} {1,3,5,7,9}{2,4,6,8}

{2,4,6,8} {1,3,7,9}{5}

{2,4} {2,4,6,8} {1,3,5,7}

{1,3,5,7}

{2,4} {5}

60

Example: Subset Construction

r b
1 2,4 5
2 4,6 1,3,5
3 2,6 5
4 2,8 1,5,7
5 2,4,6,8 1,3,7,9
6 2,8 3,5,9
7 4,8 5
8 4,6 5,7,9
9 6,8 5*

r b

{1}

* {1,3,5,7,9}

* {1,3,7,9}

{2,4,6,8} {1,3,5,7,9}{2,4,6,8}

{2,4,6,8} {1,3,7,9}{5}

{2,4} {2,4,6,8} {1,3,5,7}

{1,3,5,7}

{2,4} {5}

{2,4,6,8} {1,3,5,7,9}

61

Example: Subset Construction

r b
1 2,4 5
2 4,6 1,3,5
3 2,6 5
4 2,8 1,5,7
5 2,4,6,8 1,3,7,9
6 2,8 3,5,9
7 4,8 5
8 4,6 5,7,9
9 6,8 5*

r b

{1}

* {1,3,5,7,9}

* {1,3,7,9} {2,4,6,8} {5}

{2,4,6,8} {1,3,5,7,9}{2,4,6,8}

{2,4,6,8} {1,3,7,9}{5}

{2,4} {2,4,6,8} {1,3,5,7}

{1,3,5,7}

{2,4} {5}

{2,4,6,8} {1,3,5,7,9}

62

Example: Subset Construction

r b
1 2,4 5
2 4,6 1,3,5
3 2,6 5
4 2,8 1,5,7
5 2,4,6,8 1,3,7,9
6 2,8 3,5,9
7 4,8 5
8 4,6 5,7,9
9 6,8 5*

r b

{1}

* {1,3,5,7,9} {2,4,6,8} {1,3,5,7,9}

* {1,3,7,9} {2,4,6,8} {5}

{2,4,6,8} {1,3,5,7,9}{2,4,6,8}

{2,4,6,8} {1,3,7,9}{5}

{2,4} {2,4,6,8} {1,3,5,7}

{1,3,5,7}

{2,4} {5}

{2,4,6,8} {1,3,5,7,9}

63

Proof of Equivalence: Subset
Construction

The proof is almost a pun.

Show by induction on |w| that

δN(q0, w) = δD({q0}, w)

Basis: w = ε: δN(q0, ε) = δD({q0}, ε) =

{q0}.

64

Induction

Assume IH for strings shorter than w.

Let w = xa; IH holds for x.

Let δN(q0, x) = δD({q0}, x) = S.

Let T = the union over all states p in S of
δN(p, a).

Then δN(q0, w) = δD({q0}, w) = T.

65

NFA’s With ε-Transitions

We can allow state-to-state transitions
on ε input.

These transitions are done
spontaneously, without looking at the
input string.

A convenience at times, but still only
regular languages are accepted.

66

Example: ε-NFA

C

E F

A

B D1
1 1

0

0

0

ε

ε ε

0 1 ε
A {E} {B} ∅
B ∅ {C} {D}
C ∅ {D} ∅
D ∅ ∅ ∅
E {F} ∅ {B, C}
F {D} ∅ ∅

*

67

Closure of States

CL(q) = set of states you can reach
from state q following only arcs labeled
ε.

Example: CL(A) = {A};

CL(E) = {B, C, D, E}.

Closure of a set of states = union of the
closure of each state.

C

E F

A

B D1
1 1

0
0

0

ε

ε ε

68

Extended Delta

Intuition: (q, w) is the set of states
you can reach from q following a path
labeled w.

Basis: (q, ε) = CL(q).

Induction: (q, xa) is computed by:

1. Start with (q, x) = S.

2. Take the union of CL(δ(p, a)) for all p in S.

˄
δ

˄
δ

˄
δ

˄
δ

69

Example:
Extended Delta

(A, ε) = CL(A) = {A}.

(A, 0) = CL({E}) = {B, C, D, E}.

(A, 01) = CL({C, D}) = {C, D}.

Language of an ε-NFA is the set of

strings w such that (q0, w) contains a
final state.

C

E F

A

B D1
1 1

0
0

0

ε

ε ε
˄
δ
˄
δ
˄
δ

˄
δ

70

Equivalence of NFA, ε-NFA

Every NFA is an ε-NFA.

It just has no transitions on ε.

Converse requires us to take an ε-NFA

and construct an NFA that accepts the
same language.

We do so by combining ε–transitions

with the next transition on a real input.

71

Picture of ε-Transition Removal

Transitions
on ε

a

a

a

Transitions
on ε

We’ll go
from here

To here

72

Equivalence – (2)

Start with an ε-NFA with states Q,
inputs Σ, start state q0, final states F,
and transition function δE.

Construct an “ordinary” NFA with states
Q, inputs Σ, start state q0, final states
F’, and transition function δN.

73

Equivalence – (3)

Compute δN(q, a) as follows:

1. Let S = CL(q).

2. δN(q, a) is the union over all p in S of
δE(p, a).

F’ = the set of states q such that
CL(q) contains a state of F.

74

Equivalence – (4)

Prove by induction on |w| that

CL(δN(q0, w)) = E(q0, w).

Thus, the ε-NFA accepts w if and only if

the “ordinary” NFA does.

˄
δ

75

Example: ε-NFA-

to-NFA

0 1 ε
A {E} {B} ∅
B ∅ {C} {D}
C ∅ {D} ∅
D ∅ ∅ ∅
E {F} ∅ {B, C}
F {D} ∅ ∅

*

ε-NFA

*

*

*

Since closure of
E includes B and
C; which have
transitions on 1
to C and D.

Since closures of
B and E include
final state D.

Interesting
closures: CL(B)
= {B,D}; CL(E)
= {B,C,D,E}

0 1
A {E} {B}
B ∅ {C}
C ∅ {D}
D ∅ ∅

E {F} {C, D}
F {D} ∅

Doesn’t change,
since B, C, D
have no trans-
itions on 0.

76

Summary

DFA’s, NFA’s, and ε–NFA’s all accept

exactly the same set of languages: the
regular languages.

The NFA types are easier to design and
may have exponentially fewer states
than a DFA.

But only a DFA can be implemented!

