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Goals for this Course

● Explore mathematical structures that 
arise in math and computing.

● Equip you with the fundamental 
mathematical tools to reason about 
problems that arise in computing.

● Explore the limits of computing and what 
can be computed.

● Explore the inherent complexity of 
problems and why some problems are 
harder than others.



  

Introduction to Set Theory



“The chemical elements”
“Cute animals”

“Cool people”

“US coins.”
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The empty set 
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Set Membership

● Given a set S and an object x, we write

x ∈ S

if x is contained in S, and

x ∉ S 

otherwise.
● If x ∈ S, we say that x is an element of S.
● Given any object and any set, either that 

object is in the set or it isn't.



  

Infinite Sets

● Sets can be infinitely large.
● The natural numbers, ℕ: { 0, 1, 2, 3, …}

● Some authors (including Sipser) don't include 
zero; in this class, assume that 0 is a natural 
number.

● The integers, ℤ: { …, -2, -1, 0, 1, 2, … }
● Z is from German “Zahlen.”

● The real numbers, ℝ, including rational 
and irrational numbers.



  

Constructing Sets from Other Sets

● Consider these English descriptions:

“All even numbers.”

“All real numbers less than 137.”

“All negative integers.”

● We can't list their (infinitely many!) 
elements.

● How would we rigorously describe them?



  

{ x | x ∈ ℕ and x is even }

The Set of Even Numbers
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x is in the set of 
natural numbers

and x is even

The Set of Even Numbers

where



  

Set Builder Notation

● A set may be specified in set-builder 
notation:

{ x | some property x satisfies }
● For example:

{ r | r ∈ ℝ, r < 137 }

{ n | n is a perfect square }

{ x | x is a set of US currency }



  

Combining Sets



  

Venn Diagrams

A B

1
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4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }
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Venn Diagrams

A B
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3

A = { 1, 2, 3 }
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Union

{ 1, 2, 3, 4, 5 }
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Venn Diagrams

A B

A ∩ B
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5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Intersection

{ 3 }



  

Venn Diagrams

A B

1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }



  

Venn Diagrams

A B

A – B

1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Difference

{ 1, 2 }



  

Venn Diagrams

A B
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4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Difference

{ 1, 2 }
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4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Symmetric 
Difference

{ 1, 2, 4, 5 }
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Venn Diagrams for Three Sets



  

Venn Diagrams for Four Sets

A

B C
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Venn Diagrams for Four Sets

A

B C

D

Question to ponder: 
why can't we just 
draw four circles?

Question to ponder: 
why can't we just 
draw four circles?



  

A Fun Website:
Venn Diagrams for Seven Sets

http://moebio.com/research/sevensets/

http://moebio.com/research/sevensets/


  

Subsets and Power Sets



  

Subsets

● A set S is a subset of some set T if every 
element of S is also an element in T:

If x ∈ S, then x ∈ T.
● We denote this as S ⊆ T.
● Examples:

● { 1, 2, 3 } ⊆ { 1, 2, 3, 4 }
● ℕ ⊆ ℤ   (every natural number is an integer)
● ℤ ⊆ ℝ   (every integer is a real number)



  

What About the Empty Set?

● A set S is a subset of some set T if every 
element of S is also an element in T:

If x ∈ S, then x ∈ T.  
● Is Ø ⊆ S for any set S?
● Yes: The above statement is true.
● Vacuous truth: A statement that is true 

because it does not apply to anything.
● “All unicorns are blue.”
● “All unicorns are pink.”



  

Proper Subsets

● By definition, any set is a subset of itself. 
(Why?)

● A proper subset of a set S is a set T such 
that
● T ⊆ S
● T ≠ S

● There are multiple notations for this; they all 
mean the same thing:
● T  ⊊ S
● T ⊂ S
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,S = 

℘(S) = Ø



  

,,,,

,S = 

℘(S) = 

℘(S) is the 
power set of S 
(the set of all 
subsets of S)

℘(S) is the 
power set of S 
(the set of all 
subsets of S)

Ø
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Cardinality

● The cardinality of a set is the number of 
elements it contains.

● We denote it |S|.
● Examples:

● | { a, b, c, d, e} | = 5
● | { {a, b}, {c, d, e, f, g}, {h} } | = 3
● | { 1, 2, 3, 3, 3, 3, 3 } | = 3
● | { x | x ∈ ℕ and x < 137 } | = 137
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The Cardinality of ℕ

● What is |ℕ|?
● There are infinitely many natural numbers.
● |ℕ| can't be a natural number, since it's 

infinitely large.

● We need to introduce a new term.

● Definition: |ℕ| = ℵ0

● Pronounced “Aleph-Zero” or “Aleph-Null”



  

The Cardinality of ℕ

● What is |ℕ|?
● There are infinitely many natural numbers.
● |ℕ| can't be a natural number, since it's 

infinitely large.

● We need to introduce a new term.

● Definition: |ℕ| = ℵ0

● Pronounced “Aleph-Zero,” “Aleph-Nought,” 
or “Aleph-Null”



  

Consider the set

S = { x | x ∈ ℕ and x is even }

What is |S|?



  



  



  

How Big Are These Sets?
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Comparing Cardinalities

● Two sets have the same cardinality if 
their elements can be put into a one-to-
one correspondence with one another.

● The intuition:
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Comparing Cardinalities

● Two sets have the same cardinality if 
their elements can be put into a one-to-
one correspondence with one another.

● The intuition:

, , ,

,,
We've run out 
of elements in 
the second 

set!
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Infinite Cardinalities

0 1 2 3 4 5 6 7 8 ...

0 2 4 6 8 10 12 14 16 ...

n ↔ 2n

S = { x | x ∈ ℕ and x is even }

|S| = |ℕ| = ℵ0



  

Infinite Cardinalities
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Infinite Cardinalities

0 1 2 3 4 5 6 7 8 ...

0 1 -1 2 -2 3 -3 4 -4 ...

n ↔ if n is even, then -n / 2
             if n is odd, then (n + 1) / 2

|ℤ| = |ℕ| = ℵ0

ℕ

ℤ



  

Important Question

Do all infinite sets have
the same cardinality?



  

Prepare for one of the most beautiful (and 
surprising!) proofs in mathematics...
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|S| < | (S)|℘  



  

S = {a, b, c, d}

℘(S) = {
Ø,

{a}, {b}, {c}, {d},
{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {b, e}

{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d},
{a, b, c, d}

}

|S| < | (℘ S)|



  

If S is infinite, what is
the relation between |S| and | (℘ S)|?

Does |S| = | (℘ S)|?



  

If |S| = | (℘ S)|, there has to be a one-to-one 
correspondence between elements of S and 

subsets of S.

What might this correspondence look like?



  

Infinite Cardinalities

● Recall: |ℕ| = ₀.ℵ
● By Cantor's Theorem:

|ℕ| < | (ℕ)|℘

| (ℕ)| < | ( (ℕ))|℘ ℘ ℘

| ( (ℕ))| < | ( ( (ℕ)))|℘ ℘ ℘ ℘ ℘

| ( ( (ℕ)))| < | ( ( ( (ℕ))))|℘ ℘ ℘ ℘ ℘ ℘ ℘

…

● Not all infinite sets have the same size.
● There are multiple different infinities.



  

What does this have to do
with computation?



  

“The set of all computer programs”

“The set of all problems to solve”



  

Strings and Problems

● Consider the set of all strings:

{ “”, “a”, “b”, “c”, ..., “aa”, “ab”, “ac,” … }
● For any set of strings S, we can solve the 

following problem about S:

Write a program that accepts as input       
a string, then prints out whether or       

not that string belongs to set S.       
● Therefore, there are at least as many 

problems to solve as there are sets of 
strings.



  

Every computer program is a string.

So, there can't be any more
programs than there are strings.

From Cantor's Theorem, we know that there are 
more sets of strings than strings.

There are at least as many problems
as there are sets of strings.

|Programs| |Strings| |Sets of Strings| |Problems|≤ ≤<



  

|Programs| < |Problems|

Every computer program is a string.

So, there can't be any more
programs than there are strings.

From Cantor's Theorem, we know that there are 
more sets of strings than strings.

There are at least as many problems
as there are sets of strings.



  

There are more 
problems to solve than 
there are programs to 

solve them.



  



  

It Gets Worse

● Because there are more problems than 
strings, we can't even describe some of 
the problems that we can't solve.

● Using more advanced set theory, we can 
show that there are infinitely more 
problems than solutions.

● In fact, if you pick a totally random 
problem, the probability that you can 
solve it is zero.



  

But then it gets better...



  

Where We're Going
● Given this hard theoretical limit, what can 

we compute?
● What are the hardest problems we can solve?
● How powerful of a computer do we need to solve 

these problems?
● Of what we can compute, what can we compute 

efficiently?

● What tools do we need to reason about this?
● How do we build mathematical models of 

computation?
● How can we reason about these models?



  

Next Time

● Mathematical Proof
● What is a mathematical proof?
● How can we prove things with certainty?



  

Direct Proofs



  

Recommended Reading

A Brief History of Infinity The Mystery of the Aleph Everything and More



  

What is a Proof?



  

Induction and Deduction

● In the sciences, much reasoning is done 
inductively.
● Conduct a series of experiments and find a rule that 

explains all the results.
● Conclude that there is a general principle explaining the 

results.
● Even if all data are correct, the conclusion might be 

incorrect.

● In mathematics, reasoning is done deductively.
● Begin with a series of statements assumed to be true.
● Apply logical reasoning to show that some conclusion 

necessarily follows.
● If all the starting assumptions are correct, the 

conclusion necessarily must be correct.



  

Structure of a Mathematical Proof

● Begin with a set of initial assumptions 
called hypotheses.

● Apply logical reasoning to derive the 
final result (the conclusion) from the 
hypotheses.

● Assuming that all intermediary steps are 
sound logical reasoning, the conclusion 
follows from the hypotheses.



  

Direct Proofs



  

Direct Proofs

● A direct proof is the simplest type of 
proof.

● Starting with an initial set of hypotheses, 
apply simple logical steps to prove the 
conclusion.
● Directly proving that the result is true.

● Contrasts with indirect proofs, which 
we'll see on Friday.



  

Two Quick Definitions

● An integer n is even if there is some 
integer k such that n = 2k.
● This means that 0 is even.

● An integer n is odd if there is some 
integer k such that n = 2k + 1.

● We'll assume the following for now:
● Every integer is either even or odd.
● No integer is both even and odd.



  

A Simple Direct Proof
Theorem: If n is even, then n2 is even.
Proof: Let n be any even integer.

Since n is even, there is some integer k
such that n = 2k.

This means that n2 = (2k)2 = 4k2 = 2(2k2).

Since 2k2 is an integer, this means that
there is some integer m (namely, 2k2) such
that n2 = 2m.

Thus n2 is even. ■
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This symbol 
means “end of 

proof”

This symbol 
means “end of 

proof”
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To prove a statement of the 
form

“If P, then Q”

Assume that P is true, then show 
that Q must be true as well.

To prove a statement of the 
form

“If P, then Q”

Assume that P is true, then show 
that Q must be true as well.
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Since n is even, there is some integer k
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This means that n2 = (2k)2 = 4k2 = 2(2k2).

Since 2k2 is an integer, this means that
there is some integer m (namely, 2k2) such
that n2 = 2m.

Thus n2 is even. ■

This is the definition of an even 
integer.  When writing a 

mathematical proof, it's common 
to call back to the definitions.

This is the definition of an even 
integer.  When writing a 

mathematical proof, it's common 
to call back to the definitions.
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Notice how we use the value of k 
that we obtained above.  Giving 
names to quantities, even if we 
aren't fully sure what they are, 
allows us to manipulate them. This 
is similar to variables in programs.
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A Simple Direct Proof
Theorem: If n is even, then n2 is even.
Proof: Let n be an even integer.

Since n is even, there is some integer k
such that n = 2k.

This means that n2 = (2k)2 = 4k2 = 2(2k2).

Since 2k2 is an integer, this means that
there is some integer m (namely, 2k2) such
that n2 = 2m.

Thus n2 is even. ■
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Another Direct Proof
Theorem:For any sets A, B, and C, if A ⊆ B and B ⊆ C,

then A ⊆ C.

Proof: Let A, B, and C be arbitrary sets with
A ⊆ B and B ⊆ C.

By definition, since A ⊆ B, every x ∈ A also
satisfies x ∈ B.

By definition, since B ⊆ C, every x ∈ B also 
satisfies x ∈ C.

Consequently, any x ∈ A satisfies x ∈ C.

Thus A ⊆ C. ■
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Proving Something Always Holds

● Many statements have the form

For any X, P(X) is true.
● Examples:

For all integers n, if n is even, n2 is even.

For any sets A, B, and C, if A ⊆ B and B ⊆ C, then A ⊆ C.

For all sets S, |S| < | (S)|.℘

● How do we prove these statements when 
there are infinitely many cases to check?



  

Arbitrary Choices

● To prove that P(x) is true for all possible x, show 
that no matter what choice of x you make, P(x) must 
be true.

● Start the proof by making an arbitrary choice of x:
● “Let x be chosen arbitrarily.”
● “Let x be an arbitrary even integer.”
● “Let x be an arbitrary set containing 137.”
● “Consider any x.”

● Demonstrate that P(x) holds true for this choice of x.
● Conclude that since the choice of x was arbitrary, 

P(x) must hold true for all choices of x.
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An Incorrect Proof

Theorem: For any integer n, if n is even, n has no 
odd divisors.

Proof: Consider an arbitrary natural number, say, 
16.  16 is even, and it has no odd divisors.  Since 
our choice was arbitrary, for any arbitrary n, if n 
is even, n has no odd divisors. ■
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ar·bi·trar·y
adjective /ˈärbiˌtrerē/ 

1. Based on random choice or personal whim, rather than 
any reason or system - “his mealtimes were entirely 
arbitrary”

2. (of power or a ruling body) Unrestrained and autocratic 
in the use of authority - “arbitrary rule by King and 
bishops has been made impossible”

3. (of a constant or other quantity) Of unspecified value

Source: Google
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any reason or system - “his mealtimes were entirely 
arbitrary”

2. (of power or a ruling body) Unrestrained and autocratic 
in the use of authority - “arbitrary rule by King and 
bishops has been made impossible”

3. (of a constant or other quantity) Of unspecified value

Use this 
definition

Not this 
one!

Source: Google



  

To prove something is true for all x, do not 
choose an x and base the proof off of your 

choice!

Instead, leave x unspecified and show that 
no matter what x is, the specified property 

must hold.



  

Another Incorrect Proof

Theorem: For any sets A and B, A ⊆ A ∩ B.

Proof: We need to show that if x ∈ A, then
x ∈ A ∩ B as well.

Consider any arbitrary x ∈ A ∩ B.  This
means that x ∈ A and x ∈ B, so x ∈ A as
required. ■
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If you want to prove that P implies Q, 
assume P and prove Q.

Don't assume Q and then prove P!



  

An Entirely Different Proof

Theorem: There exists a natural number n > 0
such that the sum of all natural
numbers less than n is equal to n.
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Theorem: There exists a natural number n > 0
such that the sum of all natural
numbers less than n is equal to n.

This is a fundamentally different 
type of proof that what we've 

done before.  Instead of showing 
that every object has some 

property, we want to show that 
some object has a given property.
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Universal vs. Existential Statements

● A universal statement is a statement of the form

For all x, P(x) is true.
● We've seen how to prove these statements.

An existential statement is a statement of the 
form

There exists an x for which P(x) is true.

How do you prove an existential statement?



  

Universal vs. Existential Statements

● A universal statement is a statement of the form

For all x, P(x) is true.
● We've seen how to prove these statements.
● An existential statement is a statement of the 

form

There exists an x for which P(x) is true.
● How do you prove an existential statement?



  

Proving an Existential Statement

● We will see several different ways to 
prove “there is some x for which P(x) is 
true.”

● Simple approach: Just go and find some x 
for which P(x) is true!
● In our case, we need to find a positive 

natural number n such that that sum of all 
smaller natural numbers is equal to n.

● Can we find one?



  

An Entirely Different Proof
Theorem: There exists a natural number n > 0

such that the sum of all natural 
numbers less than n is equal to n.

Proof: Take n = 3.

There are three natural numbers smaller
than 3: 0, 1, and 2.

We have 0 + 1 + 2 = 3.

Thus 3 is a natural number greater than
zero equal to the sum of all smaller natural
numbers. ■
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The Counterfeit Coin Problem



  

Problem Statement

● You are given a set of three seemingly 
identical coins, two of which are real and 
one of which is counterfeit.

● The counterfeit coin weighs more than 
the rest of the coins.

● You are given a balance.  Using only one 
weighing on the balance, find the 
counterfeit coin.



  

Theorem: Given three coins, one of which 
weighs more than the rest, and a balance, 
there is a way to find which coin is 
counterfeit in one weighing.
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Theorem: Given three coins, one of which weighs more 
than the rest, and a balance, there is a way to find which 
coin is counterfeit in one weighing.

Proof: Label the three coins A, B, and C.  Put coins A and 
B on opposite sides of the balance.  There are three 
possible outcomes:

Case 1: Coin A is heavier than coin B.  Then coin A is 
counterfeit.

Case 2: Coin B is heaver than coin A.  Then coin B is 
counterfeit.

Case 3: Coins A and B have the same weight.  Then coin C 
is counterfeit, because coins A and B are both honest.

In each case we can locate the counterfeit coin, so with 
just one weighing it is possible to find the counterfeit 
coin. ■
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This is called a proof by cases (alternatively, 
a proof by exhaustion) and works by showing 
that the theorem is true regardless of what 

specific outcome arises.
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A Harder Problem

● You are given a set of nine seemingly 
identical coins, eight of which are real 
and one of which is counterfeit.

● The counterfeit coin weighs more than 
the rest of the coins.

● You are given a balance.  Using only two 
weighings on the balance, find the 
counterfeit coin.
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three.
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Theorem: Given nine coins, one of which weighs more than the 
rest, and a balance, there is a way to find which coin is 
counterfeit in two weighings.

Proof: Split the coins into three groups of three coins each (call 
them A, B, and C).  Put groups A and B on opposite sides of the 
balance.  There are three possible outcomes:

Case 1: Group A is heavier than group B.  Then some coin in 
group A must be counterfeit.

Case 2: Group B is heavier than group A.  Then some coin in 
group B must be counterfeit.

Case 3: Groups A and B have the same weight.  Then some coin 
in group C must be counterfeit, because the counterfeit coin is 
not in group A or group B.

With one weighing, we can therefore find a group of three 
coins, one of which is counterfeit.  Using our earlier result, we 
can find which of these three is counterfeit in just one 
weighing.  Consequently, it's possible to find which of the nine 
coins is counterfeit in just two weighings. ■
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When proving a result, it's perfectly fine to 
refer to theorems you've proven earlier!  Here, 
we cite our theorem from before and say it's 
possible to find which of three coins is the 

counterfeit.

In this course, feel free to refer to any theorem 
that we've proven in lecture, in the course notes, 
in the book, in section, or in previous problem 

sets when writing your proofs.
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Relations Between Proofs

● Proofs often build off of one another: large results 
are almost often accomplished by building off of 
previous work.
● Like writing a large program – split the work into 

smaller methods, across different classes, etc. instead of 
putting the whole thing into main.

● A result that is proven specifically as a stepping 
stone toward a larger result is called a lemma.

● We can treat the proof of the three-coin case as a 
lemma in the larger proof about nine coins.
● The result in itself isn't particularly impressive, but it 

helps us prove a more advanced result.



  

Our Very Second Lemma

● Set equality is defined as follows

A = B precisely when
for every x ∈ A, x ∈ B and vice-versa.

● This definition makes it a bit tricky to 
prove that two sets are equal.

● Instead, we will prove the following 
result:

For any sets A and B,
if A ⊆ B and B ⊆ A, then A = B.



  

Lemma: For any sets A and B, if A ⊆ B and B ⊆ A, 
then A = B.

Proof: Let A and B be arbitrary sets such that A ⊆ B and
B ⊆ A.

By definition, A ⊆ B means that for all x ∈ A,
x ∈ B.

By definition, B ⊆ A means that for all x ∈ B,
x ∈ A.

Thus whenever x ∈ A, x ∈ B and whenever x ∈ B,
x ∈ A as well.

Consequently, A = B. ■
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Using Our Lemma

● We can use this lemma to prove properties of how 
sets relate to one another.

● For example, let's prove that (A – B) ∪ B = A ∪ B.
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Using Our Lemma

● We can use this lemma to prove properties of how 
sets relate to one another.

● For example, let's prove that (A – B) ∪ B = A ∪ B.

● Proof idea: Show that each set is a subset of the 
other.



  

Lemma 1: For any sets A and B, (A – B) ∪ B ⊆ A ∪ B.
Proof: Let A and B be arbitrary sets. Consider any

x ∈ (A – B) ∪ B.

By definition, (A – B) ∪ B is the set of all x where
x ∈ A – B or x ∈ B, so we have that x ∈ A – B or
x ∈ B. We consider these two cases separately:

Case 1: x ∈ A – B.  By definition, A – B is the set
of all x where x ∈ A and x ∉ B.  This means
that x ∈ A, and so x ∈ A ∪ B as well.

Case 2: x ∈ B.  Then x ∈ A ∪ B as well.

In either case, any x ∈ (A – B) ∪ B also satisfies
x ∈ A ∪ B, so (A – B) ∪ B ⊆ A ∪ B as required. ■
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Theorem: For any sets A and B, (A – B) ∪ B = A ∪ B.

Proof: Let A and B be arbitrary sets.

By Lemma 1, (A – B) ∪ B ⊆ A ∪ B.

By Lemma 2, A ∪ B ⊆ (A – B) ∪ B.

Consequently, by our earlier lemma,
(A – B) ∪ B = A ∪ B. ■



  

Next Time

● Indirect Proofs
● Proof by contradiction.
● Proof by contrapositive.
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